Skip to main content
Log in

Overexpression of LbPT7 Promotes Phosphorus Uptake by Plants and Affects Phosphorus Uptake by Arbuscular Mycorrhizas under High Phosphorus Condition

  • GENETICS OF MICROORGANISMS
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Previous studies have proved that arbuscular mycorrhizal fungi infection and phosphate transporters are particularly important for phosphorus uptake by plants. Early laboratory studies found that LbPT7 played a role in Pi uptake and it was affected by arbuscular mycorrhizal fungi. In order to verify the phosphorus uptake function of LbPT7 gene and the effect of interaction with arbuscular mycorrhiza on plants, we constructed LbPT7 overexpression vector with Nicotiana tabacum and obtained T1 generation overexpression positive plants as test material. Under the condition of pot experiment, we designed three factors: Arbuscular Mycorrhizal Fungi treatment, genotype treatment, phosphorus concentration treatment. After 4 weeks of treatment, we measured the biomass and phosphorus content of tobacco, and determined the colonization. The results showed that overexpression of LbPT7 can promote plant phosphorus uptake and inoculation of AM fungi further promote plant phosphorus uptake in phosphorus deficiency condition, but this effect of them can’t superpose in phosphorus adequate conditions. Overexpression of LbPT7 promoted the absorption of phosphorus, but impeded the utilization of phosphorus of N. tabacum in phosphorus deficiency condition. Overexpression of LbPT7 had little effect on the colonization of AM fungi in N. tabacum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Li, Z.X., Ni, Z.F., Peng, H.R., et al., Molecular mapping of QTLs for root response to phosphorus deficiency at seedling stage in wheat (Triticum aestivum L.), Prog. Nat. Sci., 2007, vol. 17, no. 10, pp. 177—184.

    Google Scholar 

  2. Wang, Y., Chen, Y.F., and Wu, W.H., Potassium and phosphorus transport and signaling in plants. J. Integr. Plant Biol., 2021, vol. 63, no. 1, pp. 34—52.

    Article  CAS  PubMed  Google Scholar 

  3. Ch’ng, H.Y., Ahmed, O.H., and Ab Majid, N.M., Improving phosphorus availability in an acid soil using organic amendments produced from agroindustrial wastes, Sci. World J., 2014, vol. 20. https://doi.org/10.1155/2014/506356

  4. Richardson, A.E., Hocking, P.J., Simpson, R.J., and George, T.S., Plant mechanisms to optimise access to soil phosphorus, Crop Pasture Sci., 2009, vol. 60, no. 2, pp. 124—143.

    Article  CAS  Google Scholar 

  5. Grant, C., Bittman, S., Montreal, M., et al., Soil and fertilizer phosphorus: effects on plant P supply and mycorrhizal development, Can. J. Plant Sci., 2005, vol. 85, no. 1, pp. 3—14.

    Article  Google Scholar 

  6. Nagahashi, G. and Douds, D., Partial separation of root exudates components and their effects upon the growth of germinated spores of AM fungi, Mycol. Res., 2000, vol. 104, pp. 1453—1464.

    Article  Google Scholar 

  7. Smith, S.E., Smith, F.A., and Jakobsen, I., Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses, Plant Physiol., 2003, vol. 133, no. 1, pp. 16—20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Smith, S.E. and Read, D.J., Mycorrhizal Symbiosis, Amsterdam: Elsevier, 2008.

    Google Scholar 

  9. Cao, M.A., Liu, R.C., Xiao, Z.Y., et al., Symbiotic fungi alter the acquisition of phosphorus in Camellia oleifera through regulating root architecture, plant phosphate transporter gene expressions and soil phosphatase activities, J. Fungi, 2022, vol. 8, no. 8.

  10. Grant, C., Bittman, S., Montreal, M., et al., Soil and fertilizer phosphorus: effects on plant P supply and mycorrhizal development, Can. J. Plant Sci., 2005, vol. 85, no. 1, pp. 3—14.

    Article  Google Scholar 

  11. De-los-Santos, R.T., Rosales, N.M., Ocampo, J.A., and Garcia-Garrido, J.M., Ethylene alleviates the suppressive effect of phosphate on arbuscular mycorrhiza formation, J. Plant Growth Regul., 2016, vol. 35, no. 3, pp. 611—617.

    Article  Google Scholar 

  12. Schachtman, D.P., Reid, R.J., and Ayling, S.M., Phosphorus uptake by plants from soil to cell, Plant Physiol., 1998, vol. 116, no. 2, pp. 447—453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wei, X.S., Fu, Y., Yu, R.J., et al., Comprehensive sequence and expression profile analysis of the phosphate transporter gene family in soybean, Sci. Rep., 2022, vol. 12, no. 1.

  14. Koyama, T., Ono, T., Shimizu, M., et al., Promoter of Arabidopsis thaliana phosphate transporter gene drives root-specific expression of transgene in rice, J. Biosci. Bioeng., 2005, vol. 99, no. 1, pp. 38—42.

    Article  CAS  PubMed  Google Scholar 

  15. Xiao, K., Liu, J., Dewbre, G., et al., Isolation and characterization of root-specific phosphate transporter promoters from Medicago truncatula, Plant Biol., 2006, vol. 8, no. 4, pp. 439—449.

    Article  CAS  PubMed  Google Scholar 

  16. Chang, M.X., Gu, M., Xia, Y.W., et al., OsPHT1; 3 mediates uptake, translocation, and remobilization of phosphate under extremely low phosphate regimes, Plant Physiol., 2019, vol. 179, no. 2, pp. 656—670.

    Article  CAS  PubMed  Google Scholar 

  17. Xie, X.A., Huang, W., Liu, F.C., et al., Functional analysis of the novel mycorrhiza-specific phosphate transporter AsPT1 and PHT1 family from Astragalus sinicus during the arbuscular mycorrhizal symbiosis, New Phytol., 2013, vol. 198, no. 3, pp. 836—852.

    Article  CAS  PubMed  Google Scholar 

  18. Grønlund, M., Albrechtsen, M., Johansen, I.E., et al., The interplay between P uptake pathways in mycorrhizal peas: a combined physiological and gene-silencing approach, Physiol. Plant., 2013, vol. 149, no. 2, pp. 234—248.

    Article  PubMed  Google Scholar 

  19. Madrid-Delgado, G., Orozco-Miranda, M., Cruz-Osorio, M., et al., Pathways of phosphorus absorption and early signaling between the mycorrhizal fungi and plants, Phyton—Int. J. Exp. Bot., 2021, vol. 90, no. 5, pp. 1321—1338.

    Google Scholar 

  20. Hu, W.T., Zhang, H.Q., Zhang, X.Y., et al., Characterization of six PHT1 members in Lycium barbarum and their response to arbuscular mycorrhiza and water stress, Tree Physiol., 2017, vol. 37, no. 3, pp. 351—366.

    CAS  PubMed  Google Scholar 

  21. Cheng, K., Wei, M., Jin, X.X., et al., LbAMT3-1, an ammonium transporter induced by arbuscular mycorrhizal in Lycium barbarum, confers tobacco with higher mycorrhizal levels and nutrient uptake, Plant Cell Rep., 2022, vol. 41, no. 6, pp. 1477—1480.

    Article  CAS  PubMed  Google Scholar 

  22. Jyothishwaran, G., Kotresha, D., Selvaraj, T., et al., A modified freeze-thaw method for efficient transformation of Agrobacterium tumefaciens, Curr. Sci., 2007, vol. 93, no. 6, pp. 770—772.

    CAS  Google Scholar 

  23. Horsch, R.B., Fry, J.E., Hoffmann, N.L., et al., A simple and general method for transferring genes into plants, Science, 1985, vol. 227, pp. 1229—1231.

    Article  CAS  Google Scholar 

  24. Koske, R.E. and Gemma, J.N., A modified procedure for staining roots detect VA mycorrhizas. Mycol. Res., 1989, vol. 92, no. 4, pp. 486—488.

    Article  Google Scholar 

  25. McGonigle, T.P., Miller, M.H., Evans, D.G., et al., A new method which gives an objective measure of colonization of roots by vesicular arbuscular mycorrhizal fungi, New Phytol., 1990, vol. 115, no. 3, pp. 495—501.

    Article  CAS  PubMed  Google Scholar 

  26. Bao, S.D., Agrochemical Analysis of Soil, Beijing: China Agricultural Press, 2000.

    Google Scholar 

  27. Wang, P., Wu, T.Y., Wen, S.H., et al., Effect of arbuscular mycorrhizal fungi on rhizosphere organic acid content and microbial activity of trifoliate orange under different low P conditions, Arch. Agron. Soil Sci., 2019, vol. 65, no. 14, pp. 2029—2042.

    Article  CAS  Google Scholar 

  28. Khan, Y., Shah, S., and Tian, H., The roles of arbuscular mycorrhizal fungi in influencing plant nutrients, photosynthesis, and metabolites of cereal crops—a review, Agronomy (Basel), 2022, vol. 12.

  29. Akiyama, K., Matsuoka, H., and Hayashi, H., Isolation and identification of a phosphate deficiency-induced C-glycosylflavonoid that stimulates arbuscular mycorrhiza formation in melon roots, Mol. Plant—Microbe Interact., 2002, vol. 15, no. 4, pp. 334—340.

    Article  CAS  PubMed  Google Scholar 

  30. Das, D., Paries, M., Hobecker, K., et al., Phosphate starvation response transcription factors enable arbuscular mycorrhiza symbiosis, Nat. Commun., 2022, vol. 13, no. 1.

  31. Rausch, C. and Bucher, M., Molecular mechanisms of phosphate transport in plants, Planta, 2002, vol. 216, pp. 23—37.

    Article  CAS  PubMed  Google Scholar 

  32. Liao, D.H., Sun, C., Liang, H.Y., et al., SlSPX1-SlPHR complexes mediate the suppression of arbuscular mycorrhizal symbiosis by phosphate repletion in tomato, Plant Cell, 2022, vol. 34, no. 10, pp. 4045—4065.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Nagy, R., Karandashov, V., Chague, W., et al., The characterization of novel mycorrhiza-specific phosphate transporters from Lycopersicon esculentum and Solanum tuberosum uncovers functional redundancy in symbiotic phosphate transport in solanaceous species, Plant J., 2005, vol. 42, no. 2, pp. 236—250.

    Article  CAS  PubMed  Google Scholar 

  34. Tan, Z.J., Hu, Y.L., and Lin, Z.P., Expression of NtPT5 is correlated with the degree of colonization in tobacco roots inoculated with Glomus etunicatum, Plant Mol. Biol. Rep., 2012, vol. 30, no. 4, pp. 885—893.

    Article  CAS  Google Scholar 

  35. Chen, A.Q., Hu, J., Sun, S.B., and Xu, G.H., Conservation and divergence of both phosphate- and mycorrhiza-regulated physiological responses and expression patterns of phosphate transporters in solanaceous species, New Phytol., 2007, vol. 173, no. 4, pp. 817—831.

    Article  CAS  PubMed  Google Scholar 

  36. Smith, S.E., Jakobsen, I., Gronlund, M., and Smith, F.A., Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition, Plant Physiol., 2011, vol. 156, no. 3, pp. 1050—1057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hinsinger, P., Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review, Plant Soil, 2001, vol. 237, no. 2, pp. 173—195.

    Article  CAS  Google Scholar 

  38. Chrysargyris, A., Panayiotou, C., and Tzortzakis, N., Nitrogen and phosphorus levels affected plant growth, essential oil composition and antioxidant status of lavender plant (Lavandula angustifolia Mill.), Ind. Crops Prod., 2016, vol. 83, pp. 577—586.

    Article  CAS  Google Scholar 

  39. Elser, J.J., Fagan, W.F., Kerkhof, A.J., et al., Biological stoichiometry of plant production: metabolism, scaling and ecological response to global change, New Phytol., 2010, vol. 186, no. 3, pp. 593—608.

    Article  CAS  PubMed  Google Scholar 

  40. Yang, Z.J., Wu, X.H., Chen, L.H., et al., Fertilization regulates accumulation and allocation of biomass and nutrients in Phoebe bournei seedlings, Agriculture (Basel), 2022, vol. 11, no. 12.

  41. Yang, Q., Li, Q., Zhang, J.B., et al., Phosphorus addition increases aboveground biomass but does not change N:P stoichiometry of Chinese fir (Cunninghamia lanceolata) seedlings under nitrogen deposition, Pol. J. Environ. Stud., 2021, vol. 30, no. 2, pp. 1421—1431.

    Article  CAS  Google Scholar 

  42. Tian, C.J., He, X.Y., Zhong, Y., and Chen, J.K., Effect of inoculation with ecto- and arbuscular mycorrhizae and Rhizobium on the growth and nitrogen fixation by black locust, Robinia pseudoacacia, New For., 2003, vol. 25, no. 2, pp. 125—131.

    Article  Google Scholar 

  43. Shin, H., Shin, H.S., Dewbre, G.R., and Harrison, M.J., Phosphate transport in Arabidopsis: Pht1;1 and Pht1;4 play a major role in phosphate acquisition from both low- and high-phosphate environments, Plant J., 2004, vol. 39, no. 4, pp. 629—642.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was funded by the National Natural Science Foundation of China (42277027, 31700530), the State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources (SKLCUSA-b202007).

Author information

Authors and Affiliations

Authors

Contributions

Yanpeng Li: Conceptualization, Investigation Data curation, Methodology, Software, Visualization, Writing— original draft, Writing—review and editing. Xia Han: Conceptualization, Investigation, Methodology, Software. Yuhao Zhou: Investigation, Software, Visualization. Ming Tang: Supervision, Funding acquisition, Project administration. Haoqiang Zhang: Conceptualization, Supervision, Funding acquisition, Project administration, Writing— review and editing.

Corresponding author

Correspondence to H. Zhang.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Zhou, Y., Han, X. et al. Overexpression of LbPT7 Promotes Phosphorus Uptake by Plants and Affects Phosphorus Uptake by Arbuscular Mycorrhizas under High Phosphorus Condition. Russ J Genet 60, 588–594 (2024). https://doi.org/10.1134/S1022795424700108

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795424700108

Keywords:

Navigation