Skip to main content
Log in

Genetic Variability of the Laxmann’s Shrew (Sorex caecutiens Laxmann, 1788) of the Kolyma River Basin and Chukotka

  • ANIMAL GENETICS
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Nucleotide sequence polymorphism and haplotypic diversity of the cytochrome b gene were studied in samples of the Laxmann’s Shrew subspecies-Sorex caecutiens koreni from the populations of the Kolyma River basin and Chukotka Peninsula. Fifty-six cytb haplotypes differing among themselves by 87 mutations in 84 sites were found. The cytb haplotypes of individuals of the subspecies S. c. koreni and S. c. macropygmaeus were shown to belong to the same maternal mtDNA lineage; their monophyletic origin from the same ancestral haplotype Scb1 and the presence of identical cytb haplotypes in both subspecies were revealed. The mutual isolation of the shrew populations in the upper basin of the Kolyma River and Chukotka is shown. The proportion of intrapopulation genetic variability is 95.74%, intergroup variability is 5.74%, and intragroup variability is 1.48%, which reflects a very high level of intrapopulation variability of cytb haplotypes in the studied groups of S. c. koreni, their monophyletic origin, and the genetic unity of the Chukchi samples. The values of molecular diversity indices testify to the stability of populations that have had a high value of effective abundance for a long time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Chernyavskii, F.B., Mlekopitayushchie krainego severo-vostoka Sibiri (Mammals of the Extreme Northeastern Siberia), Mocow: Nauka, 1984.

  2. Yudin, B.S., Nasekomoyadnye mlekopitayushchie Sibiri (Insectivorous Mammals of Siberia), Novosibirsk: Nauka, 1989.

  3. Dokuchaev, N.E., Comparative analysis of two common shrew subspecies from the mainland of northeast Asia, Evolyutsionnye i geneticheskie issledovaniya mlekopitayushchikh (Evolutionary and Genetic Studies of Mammals) (Proc. All-Union Symp.), Vladivostok: Dal’nevost. Otd. Akad. Nauk SSSR, 1990b, part 2, pp. 80—82.

  4. Okhotina, MV., Subspecies taxonomic revision of the Far Eastern shrews (Insectivora, Sorex) with a description of new subspecies, Voprosy sistematiki, faunistiki i paleontologii melkikh mlekopitayushchikh (Issues in Taxonomy, Faunistics and Paleontology of Small Mammals), Trudy Zoologicheskogo Instituta Akademii Nauk SSSR (Proceedings of the Zoological Institute of the USSR Academy of Sciences), St. Petersburg: Akad. Nauk SSSR, 1993, vol. 243, pp. 58–70.

  5. Dokuchaev, N.E., Ekologiya burozubok Severo-Vostochnoi Azii (Ecology of Shrews in Northeast Asia), Moscow: Nauka, 1990.

  6. Grigoryeva, O.O., Borisov, Y.M., Stakheev, V.V., et al., Genetic structure of the common shrew Sorex araneus L. 1758 (Mammalia, Lipotyphla) in continuous and fragmented areas, Russ. J. Genet., 2015, vol. 51, no. 6, pp. 607–618. https://doi.org/10.1134/S1022795415030047

    Article  CAS  Google Scholar 

  7. Kovaleva, V.Yu., Litvinov, Yu.N., and Efimov, V.M., Shrews (Soricidae, Eulipotyphla) of Siberia and the Far East: combination and searching for congruence of molecular-genetic and morphological data, Zool. Zh., 2013, vol. 92, no. 11, pp. 1383–1398. https://doi.org/10.7868/S0044513413110081

    Article  Google Scholar 

  8. Ohdachi, S., Masuda, R., Abe, H., et al., Phylogeny of Eurasian soricine shrews (Insectivora, Mammalia) inferred from the mitochondrial cytochrome b gene sequences, Zool. Sci., 1997, vol. 14, no. 3, pp. 527–532.

    Article  Google Scholar 

  9. Ohdachi, S., Dokuchaev, N.E., Hasegawa, M., and Masuda, R., Intraspecific phylogeny and geographical variation of six species of northeastern Asiatic Sorex shrews based on the mitochondrial cytochrome b sequences, Mol. Ecol., 2001, vol. 10, no. 9, pp. 2199–2213. https://doi.org/10.1046/j.1365-294x.2001.01359.x

    Article  CAS  PubMed  Google Scholar 

  10. Ohdachi, S.D., Abe, H., and Han, S.-H., Phylogenetical positions of Sorex sp. (Insectivora, Mammalia) from Cheju island and S. caecutiens from the Korean peninsula, inferred from mitochondrial cytochrome b gene sequences, Zool. Sci., 2003, vol. 20, pp. 91–95. https://doi.org/10.2108/zsj.20.91

    Article  CAS  Google Scholar 

  11. Ohdachi, S.D., Yoshizawa, K., Hanski, I., et al., Intraspecific phylogeny and nucleotide diversity of the least shrews, the Sorex minutissimus—S. yukonicus complex, based on nucleotide sequences of the mitochondrial cytochrome b gene and the control region, Mamm. Study, 2012, vol. 37, pp. 281–297. https://doi.org/10.3106/041.037.0403

    Article  Google Scholar 

  12. Demboski, J.R. and Cook, J.A., Phylogenetic diversification within the Sorex cinereus group (Soricidae), J. Mammal., 2003, vol. 84, no. 1, pp. 144–158. https://doi.org/10.1644/1545-1542(2003)084<0144:P-DWTSC>2.0.CO;2

    Article  Google Scholar 

  13. Bannikova, A.A., Dokuchaev, N.E., Yudina, E.V., et al., Holarctic phylogeography of the tundra shrew (Sorex tundrensis) based on mitochondrial genes, Biol. J. Linn. Soc., 2010, vol. 101, no. 3, pp. 721–746. https://doi.org/10.1111/j.1095-8312.2010.01510.x

    Article  Google Scholar 

  14. Bannikova, A.A., Chernetskaya, D.M., Raspopova, A.A., et al., Evolutionary history of the genus Sorex as inferred from multigene data and molecular clock of major divergence events with the implications for systematics, Zool. Scr., 2018, vol. 47, no. 5, pp. 518–538. https://doi.org/10.1111/zsc.12302

    Article  Google Scholar 

  15. Esteva, M., Cervantes, F.A., Brant, S.V., and Cook, J.A., Molecular phylogeny of long-tailed shrews (genus Sorex) from México and Guatemala, Zootaxa, 2010, vol. 2615, pp. 47–65. https://doi.org/10.11646/zootaxa.2615.1.3

    Article  Google Scholar 

  16. Koh, H.S., Jang, K.H., In, S.T., et al., Genetic distinctness of Sorex caecutiens hallamontanus (Soricomorpha: Mammalia) from Jeju Island in Korea: cytochrome oxidase I and cytochrome b sequence analyses, Anim. Syst., Evol. Diversity, 2012, vol. 28, no. 3, pp. 215–219. https://doi.org/10.5635/ASED.2012.28.3.215

    Article  Google Scholar 

  17. Pereverzeva, V.V., Dokuchaev, N.E., Primak, A.A., and Kiselev, S.V., Genetic variation of the Laxmann’s shrew (Sorex caecutiens Laxmann, 1788) of the Northern Priokhotye, Vestn. Sev.-Vost. Nauchn. Tsentra, Dal’nevost. Otd. Ross. Akad. Nauk, 2019, no. 1, pp. 103–115.

  18. Jin, Z.-M., Zhu, L., and Ma, J.-Z., Sequencing and analysis of the complete mitochondrial genome of the masked shrew (Sorex caecutiens) from China, Mitochondrial DNA, Part B, 2017, vol. 2, no. 2, pp. 486–488.

    Article  PubMed  Google Scholar 

  19. Tamura, K., Stecher, G., Peterson, D., et al., MEGA6: molecular evolutionary genetics analysis version 6.0, Mol. Biol. Evol., 2013, vol. 30, pp. 2725–2729. https://doi.org/10.1093/molbev/mst197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Excoffier, L., Laval, G., and Schneider, S., Arlequin ver. 3.0: an integrated software package for population genetics data analysis, Evol. Bioinf. Online, 2005, vol. 1, pp. 47–50. https://doi.org/10.1177/117693430500100003

    Article  CAS  Google Scholar 

  21. Tajima, F., Statistical method for testing the neutral mutation hypothesis by DNA polymorphism, Genetics, 1989, vol. 123, pp. 585–595. https://doi.org/10.1093/genetics/123.3.585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fu, Y.X., Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection, Genetics, 1997, vol. 147, pp. 915–925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bandelt, H.-J., Forster, P., and Röhl, A., Median-joining networks for inferring intraspecific phylogenies, Mol. Biol. Evol., 1999, vol. 16, no. 1, pp. 37–48.

    Article  CAS  PubMed  Google Scholar 

  24. Nei, M., Molecular Evolutionary Genetics, New York: Columbia Univ. Press, 1987.

    Book  Google Scholar 

  25. Nei, M. and Kumar, S., Molecular Evolution and Phylogenetics, New York: Oxford Univ. Press, 2000.

    Book  Google Scholar 

  26. Zardoya, R. and Meyer, A., Phylogenetic performance of mitochondrial protein-coding genes in resolving relationships among vertebrates, Mol. Biol. Evol., 1996, vol. 13, no. 7, pp. 933–942.

    Article  CAS  PubMed  Google Scholar 

  27. Hassanin, A., Lecointre, G., and Tiller, S., The “evolutionary signal” of homoplasy in protein-coding gene sequences and its consequences for a priori weighting in phylogeny, C. R. Acad. Sci., 1998, vol. 321, no. 7, pp. 611–620.

    Article  CAS  Google Scholar 

  28. Abramson, N.I., Phylogeography: results, issues and perspectives, Inf. Vestn. Vavilovskogo O-va. Genet. Sel., 2007, vol. 11, no. 2, pp. 307–331.

    Google Scholar 

  29. Dokuchaev, N.E., The role of the Beringian landmass in the settlement and formation of new forms in shrews, Vestn. Dal’nevost. Otd. Ross. Akad. Nauk, 1997, no. 2, pp. 54–61.

  30. Dokuchaev, N.E. and Gulyaev, V.D., Quaternary history of shrews of Northeast Asia in view of helminthological data, Biologiya nasekomoyadnykh mlekopitayushchikh (Biology of Insectivorous Mammals) (Proc. IIIrd All-Russ. Sci. Conf. on Biology of Insectivorous Mammals), Novosibirsk: TsERIS, 2007, pp. 38–40.

  31. Pereverzeva, V.V., Primak, A.A., and Dubinin, E.A., Genetic structure of Northern red-backed vole (Myodes (=Clethrionomys) rutilus Pallas, 1779) populations of the northern Priokhotye determined by sequence variation of the mtDNA cytochrome b gene, Russ. J. Genet.: Appl. Res., 2014, vol. 4, no. 1, pp. 27–34. https://doi.org/10.1134/S2079059714010079

    Article  Google Scholar 

  32. Pereverzeva, V.V., Primak, A.A., Dokuchaev, N.E., et al., Variation of the cytochrome b mtDNA gene of the red-gray vole (Craseomys rufocanus Sundevall, 1846) of the Northern Priokhotye and the river Kolyma basin, Vestn. Sev.-Vost. Nauchn. Tsentra, Dal’nevost. Otd. Ross. Akad. Nauk, 2018, no. 1, pp. 101–112.

  33. Pereverzeva, V.V., Dokuchaev, N.E., Primak, A.A., et al., Variation of the cytochrome b mtDNA gene of the tundra vole (Alexandromys oeconomus Pallas, 1776) of the Northern Priokhotye, Usp. Sovrem. Biol., 2022, vol. 142, no. 1, pp. 90–104. https://doi.org/10.31857/S0042132422010057

    Article  Google Scholar 

Download references

Funding

The research was carried out in the course of fulfilling a state assignment on the topic “Mammals of the Arctic and Subarctic: Structure and Dynamics of Communities, Problems of Conservation,” state registration no. AAAA-A18-118010990006-3 (Institute of Biological Problems of the North, Far Eastern Branch of the Russian Academy of Sciences).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Pereverzeva.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This article does not contain any studies using animals. The biomaterial used in the work was taken from the museum collection of our laboratory—tissue samples preserved in alcohol.

This article does not contain any studies involving human subjects.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pereverzeva, V.V., Dokuchaev, N.E., Primak, A.A. et al. Genetic Variability of the Laxmann’s Shrew (Sorex caecutiens Laxmann, 1788) of the Kolyma River Basin and Chukotka. Russ J Genet 60, 604–611 (2024). https://doi.org/10.1134/S1022795424700054

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795424700054

Keywords:

Navigation