Skip to main content
Log in

Expression Profile and Relationships between microRNAs as Biomarkers in COPD Patients

  • REVIEWS AND THEORETICAL ARTICLES
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Chronic obstructive pulmonary disease is a chronic inflammatory lung disease that causes airflow obstruction in the lungs. In fact, it is a lung disease that can cause involvement of respiratory tracts, lung tissue or blood vessels. There is still no accurate diagnostic tool for COPD. Among various biomarkers, the current review focuses on different types of miRNAs in COPD which have been studied. Many target cells and molecules, microRNAs are involved in the pathogenesis of COPD. MicroRNAs are a group of protected short single-stranded RNAs between 19 and 23 nucleotides and non-coding, which act as post-transcriptional regulators in animals, plants and viruses. In this article, the aim is to collect and categorize the studies conducted in the field of microRNA as biomarkers in COPD patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

REFERENCES

  1. Patel, A.R., Singh, S., and Khawaja, I., Global initiative for chronic obstructive lung disease: the changes made, Cureus, 2019, vol. 11, no. 6. https://doi.org/10.7759/cureus.4985

  2. Sethi, S., Molecular diagnosis of respiratory tract infection in acute exacerbations of chronic obstructive pulmonary disease, Clin. Infect. Dis., 2011, vol. 52, suppl. 4, pp. 290—295. https://doi.org/10.1093/cid/cir044

    Article  Google Scholar 

  3. Soriano, J.B., Zielinski, J., and Price, D., Screening for and early detection of chronic obstructive pulmonary disease, Lancet, 2009, vol. 374, no. 9691, pp. 721—732. https://doi.org/10.1016/S0140-6736(09)61290-3

    Article  PubMed  Google Scholar 

  4. Vestbo, J., Hurd, S.S., Agustí, A.G., et al., Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary, Am. J. Respir. Crit. Care. Med., 2013, vol. 87, no. 4, pp. 347—365. https://doi.org/10.1164/rccm.201204-0596PP

    Article  CAS  Google Scholar 

  5. Hogg, J.C., Chu, F., Utokaparch, S., et al., The nature of small-airway obstruction in chronic obstructive pulmonary disease, N. Engl. J. Med., 2004, vol. 350, no. 26, pp. 2645—2653. https://doi.org/10.1056/NEJMoa032158

    Article  CAS  PubMed  Google Scholar 

  6. Llor, C., Moragas, A., Hernández, S., et al., Efficacy of antibiotic therapy for acute exacerbations of mild to moderate chronic obstructive pulmonary disease, Am. J. Respir. Crit. Care. Med., 2012, vol. 186, no. 8, pp. 716—723. https://doi.org/10.1164/rccm.201206-0996OC

    Article  CAS  PubMed  Google Scholar 

  7. Jafari-Sales, A., Bagherizadeh, Y., Helali-Pargali, R., et al., Evaluation of serum antibodies against Chlamydia pneumoniae in patients with chronic obstructive pulmonary disease in Tabriz hospitals, J. Knowl. Heal. Med. Sci., 2019, vol. 13, no. 4. https://doi.org/10.22100/jkh.v13i4.2071

  8. Jameson, J.L., Kasper, D.L., Longo, D.L., et al., Harrison’s Principles of Internal Medicine, Published online 2018.

  9. Ullah, R. and Ashraf, S., Chronic obstructive lung disease: a rising problem for the world, Pak. J. Chest. Med., 2018, vol. 23, no. 4, pp. 130—133.

    Google Scholar 

  10. Zeng, G., Sun, B., and Zhong, N., Non-smoking-related chronic obstructive pulmonary disease: a neglected entity?, Respirology, 2012, vol. 17, no. 6, pp. 908—912. https://doi.org/10.1111/j.1440-1843.2012.02152.x

    Article  PubMed  Google Scholar 

  11. Liu, P.-F., Yan, P., Zhao, D.-H., et al., The effect of environmental factors on the differential expression of miRNAs in patients with chronic obstructive pulmonary disease: a pilot clinical study, Int. J. Chron. Obstruct. Pulmon. Dis., 2018, vol. 13, p. 741. https://doi.org/10.2147/COPD.S156865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dadvand, P., Nieuwenhuijsen, M.J., Agustí, A., et al., Air pollution and biomarkers of systemic inflammation and tissue repair in COPD patients, Eur. Respir. J., 2014, vol. 44, no. 3, pp. 603—613. https://doi.org/10.1183/09031936.00168813

    Article  CAS  PubMed  Google Scholar 

  13. Barnes, P.J., Inflammatory mechanisms in patients with chronic obstructive pulmonary disease, J. Allergy. Clin. Immunol., 2016, vol. 138, no. 1, pp. 16—27. https://doi.org/10.1016/j.jaci.2016.05.011

    Article  CAS  PubMed  Google Scholar 

  14. Stolzenburg, L.R. and Harris, A., The role of microRNAs in chronic respiratory disease: recent insights, Biol. Chem., 2018, vol. 399, no. 3, pp. 219—234. https://doi.org/10.1515/hsz-2017-0249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ezzie, M.E., Crawford, M., Cho, J.-H., et al., Gene expression networks in COPD: microRNA and mRNA regulation, Thorax, 2012, vol. 7, no. 2, pp. 122—131.

    Article  Google Scholar 

  16. Bartel, D.P., MicroRNAs: genomics, biogenesis, mechanism, and function, Cell, 2004, vol. 116, no. 2, pp. 281—297. https://doi.org/10.1136/thoraxjnl-2011-200089

    Article  CAS  PubMed  Google Scholar 

  17. Pauli, A., Rinn, J.L., and Schier, A.F., Non-coding RNAs as regulators of embryogenesis, Nat. Rev. Genet., 2011, vol. 12, no. 2, pp. 136—149. https://doi.org/10.1038/nrg2904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Eilam-Frenkel, B., Naaman, H., Brkic, G., et al., MicroRNA 146-5p, miR-let-7c-5p, miR-221 and miR-345-5p are differentially expressed in respiratory syncytial virus (RSV) persistently infected HEp-2 cells, Virus Res., 2018, vol. 251, pp. 34—39. https://doi.org/10.1016/j.virusres.2018.05.006

    Article  CAS  PubMed  Google Scholar 

  19. Sandiford, O.A., Moore, C.A., Du, J., et al., Human aging and cancer: role of miRNA in tumor microenvironment, in Exosomes, Stem Cells and MicroRNA, Springer-Verlag, 2018, pp. 137—152. https://doi.org/10.1007/978-3-319-74470-4_9

  20. Di Leva, G., Garofalo, M., and Croce, C.M., MicroRNAs in cancer, Annu. Rev. Pathol. Mech. Dis., 2014, vol. 9, pp. 287—314. https://doi.org/10.1146/annurev-pathol-012513-104715

    Article  CAS  Google Scholar 

  21. Dai, R. and Ahmed, S.A., MicroRNA, a new paradigm for understanding immunoregulation, inflammation, and autoimmune diseases, Transl. Res., 2011, vol. 157, no. 4, pp. 163—179. https://doi.org/10.1016/j.trsl.2011.01.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Coolen, M. and Bally-Cuif, L., MicroRNAs in brain development and physiology, Curr. Opin. Neurobiol., 2009, vol. 19, no. 5, pp. 461—470. https://doi.org/10.1016/j.conb.2009.09.006

    Article  CAS  PubMed  Google Scholar 

  23. Szymczak, I., Wieczfinska, J., and Pawliczak, R., Molecular background of miRNA role in asthma and COPD: an updated insight, 2016. https://doi.org/10.1155/2016/7802521

  24. Donaldson, A., Natanek, S.A., Lewis, A., et al., Increased skeletal muscle-specific microRNA in the blood of patients with COPD, Thorax, 2013, vol. 68, no. 12, pp. 1140–1149. https://doi.org/10.1136/thoraxjnl-2012-203129

    Article  PubMed  Google Scholar 

  25. Shi, Z.G., Sun, Y., Wang, K.S., et al., Effects of miR-26a/miR-146a/miR-31 on airway inflammation of asthma mice and asthma children, Eur. Rev. Med. Pharmacol. Sci., 2019, vol. 23, no. 12, pp. 5432—5440. https://doi.org/10.26355/eurrev_201906_18212

    Article  PubMed  Google Scholar 

  26. van Pottelberge, G.R., Mestdagh, P., Bracke, K.R., et al., MicroRNA expression in induced sputum of smokers and patients with chronic obstructive pulmonary disease, Am. J. Respir. Crit. Care. Med., 2011, vol. 183, no. 7, pp. 898—906. https://doi.org/10.1164/rccm.201002-0304OC

    Article  PubMed  Google Scholar 

  27. Akbas, F., Coskunpinar, E., Aynac, E., et al., Analysis of serum micro-RNAs as potential biomarker in chronic obstructive pulmonary disease, Exp. Lung Res., 2012, vol. 8, no. 6, pp. 286—294. https://doi.org/10.3109/01902148.2012.689088

  28. Zhang, L., Valizadeh, H., Alipourfard, I., et al., Epigenetic modifications and therapy in chronic obstructive pulmonary disease (COPD): an update review, COPD. J. Chronic Obstruct. Pulm. Dis., 2020, vol. 17, no. 3, pp. 333—342. https://doi.org/10.1080/15412555.2020.1780576

    Article  Google Scholar 

  29. Mohamed, A., Pekoz, A.Y., Ross, K., et al., Pulmonary delivery of nanocomposite microparticles (NCMPs) incorporating miR-146a for treatment of COPD, Int. J. Pharm., 2019, vol. 69. https://doi.org/10.1016/j.ijpharm.2019.118524

  30. Hersoug, L.-G., Brasch-Andersen, C., Husemoen, L.L.N., et al., The relationship of glutathione-S-transferases copy number variation and indoor air pollution to symptoms and markers of respiratory disease, Clin. Respir. J., 2012, vol. 6, no. 3, pp. 175—185. https://doi.org/10.1111/j.1752-699X.2011.00258.x

    Article  PubMed  Google Scholar 

  31. Cai, J., Wu, J., Zhang, H., et al., miR-186 downregulation correlates with poor survival in lung adenocarcinoma, where it interferes with cell-cycle regulation miR-186 functions as a tumor-suppressor in NSCLC, Cancer. Res., 2013, vol. 73, no. 2, pp. 756—766. https://doi.org/10.1158/0008-5472.CAN-12-2651

    Article  CAS  PubMed  Google Scholar 

  32. Lin, L., Sun, J., Wu, D., et al., MicroRNA-186 is associated with hypoxia-inducible factor-1α expression in chronic obstructive pulmonary disease, Mol. Genet. Genomic Med., 2019, vol. 7, no. 3. https://doi.org/10.1002/mgg3.531

  33. Kim, J., Kim, D.Y., Heo, H.-R., et al., Role of miRNA-181a-2-3p in cadmium-induced inflammatory responses of human bronchial epithelial cells, J. Thorac. Dis., 2019, vol. 11, no. 7, p. 3055. https://doi.org/10.21037/jtd.2019.07.55

    Article  PubMed  PubMed Central  Google Scholar 

  34. Nazari-Jahantigh, M., Wei, Y., and Schober, A., The role of microRNAs in arterial remodelling, Thromb. Haemostasis, 2012, vol. 107, no. 4, pp. 611—618. https://doi.org/10.1160/TH11-12-0826

    Article  CAS  Google Scholar 

  35. Musri, M.M., Coll-Bonfill, N., Maron, B.A., et al., MicroRNA dysregulation in pulmonary arteries from chronic obstructive pulmonary disease: relationships with vascular remodeling, Am. J. Respir. Cell. Mol. Biol., 2018, vol. 59, no. 4, pp. 490—499. https://doi.org/10.1165/rcmb.2017-0040OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Vlahos, R. and Bozinovski, S., Role of alveolar macrophages in chronic obstructive pulmonary disease, Front. Immunol., 2014, vol. 5. https://doi.org/10.3389/fimmu.2014.00435

  37. Wang, D., He, S., Liu, B., and Liu, C., MiR-27-3p regulates TLR2/4-dependent mouse alveolar macrophage activation by targetting PPARγ, Clin. Sci., 2018, vol. 132, no. 9, pp. 943—958. https://doi.org/10.1042/CS20180083

    Article  CAS  Google Scholar 

  38. Cao, Z., Zhang, N., Lou, T., et al., MicroRNA-183 down-regulates the expression of BKCɑβ1 protein that is related to the severity of chronic obstructive pulmonary disease, Hippokratia, 2014, vol. 18, no. 4, p. 328.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Schuliga, M., NF-kappaB signaling in chronic inflammatory airway disease, Biomolecules, 2015, vol. 5, no. 3, pp. 1266—1283. https://doi.org/10.3390/biom5031266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zago, M., de Souza, A.R., Hecht, E., et al., The NF-κB family member RelB regulates microRNA miR-146a to suppress cigarette smoke-induced COX-2 protein expression in lung fibroblasts, Toxicol. Lett., 2014, vol. 226, no. 2, pp. 107—116. https://doi.org/10.1016/j.toxlet.2014.01.020

    Article  CAS  PubMed  Google Scholar 

  41. Booton, R. and Lindsay, M.A., Emerging role of microRNAs and long noncoding RNAs in respiratory disease, Chest, 2014, vol. 146, no. 1, pp. 193—204. https://doi.org/10.1378/chest.13-2736

    Article  CAS  Google Scholar 

  42. Ellis, K.L., Cameron, V.A., Troughton, R.W., et al., Circulating microRNAs as candidate markers to distinguish heart failure in breathless patients, Eur. J. Heart Failure, 2013, vol. 15, no. 10, pp. 1138—1147. https://doi.org/10.1093/eurjhf/hft078

    Article  CAS  Google Scholar 

  43. Xie, L., Wu, M., Lin, H., et al., An increased ratio of serum miR-21 to miR-181a levels is associated with the early pathogenic process of chronic obstructive pulmonary disease in asymptomatic heavy smokers, Mol. Biosyst., 2014, vol. 10, no. 5, pp. 1072—1081. https://doi.org/10.1039/c3mb70564a

    Article  CAS  PubMed  Google Scholar 

  44. Wang, M., Huang, Y., Liang, Z., et al., Plasma mi RNAs might be promising biomarkers of chronic obstructive pulmonary disease, Clin. Respir. J., 2016, vol. 10, no. 1, pp. 104—111. https://doi.org/10.1111/crj.12194

    Article  CAS  PubMed  Google Scholar 

  45. Leidinger, P., Keller, A., Borries, A., et al., Specific peripheral miRNA profiles for distinguishing lung cancer from COPD, Lung Cancer., 2011, vol. 74, no. 1, pp. 41—47. https://doi.org/10.1016/j.lungcan.2011.02.003

    Article  PubMed  Google Scholar 

  46. Molina-Pinelo, S., Pastor, M.D., Suarez, R., et al., MicroRNA clusters: dysregulation in lung adenocarcinoma and COPD, Eur. Respir. J., 2014, vol. 43, no. 6, pp. 1740—1749. https://doi.org/10.1183/09031936.00091513

    Article  CAS  PubMed  Google Scholar 

  47. Wang, R., Xu, J., Liu, H., and Zhao, Z., Peripheral leukocyte microRNAs as novel biomarkers for COPD, Int. J. Chron. Obstruct. Pulmon. Dis., 2017, vol. 12, p. 1101. https://doi.org/10.2147/COPD.S130416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mizuno, S., Bogaard, H.J., Gomez-Arroyo, J., et al., MicroRNA-199a-5p is associated with hypoxia-inducible factor-1α expression in lungs from patients with COPD, Chest, 2012, vol. 142, no. 3, pp. 663—672. https://doi.org/10.1378/chest.11-2746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hassan, T., Smith, S.G.J., Gaughan, K., et al., Isolation and identification of cell-specific microRNAs targeting a messenger RNA using a biotinylated anti-sense oligonucleotide capture affinity technique, Nucleic Acids. Res., 2013, vol. 41, no. 6, р. е71. https://doi.org/10.1093/nar/gks1466

  50. Salimian, J., Mirzaei, H., Moridikia, A., et al., Chronic obstructive pulmonary disease: MicroRNAs and exosomes as new diagnostic and therapeutic biomarkers, J. Res. Med. Sci., 2018, vol. 23. https://doi.org/10.4103/jrms.JRMS_1054_17

  51. Theodore, S.C., Rhim, J.S., Turner, T., and Yates, C., MiRNA 26a expression in a novel panel of African American prostate cancer cell lines, Ethn. Dis., 2010, vol. 20, p. S1.

    PubMed  Google Scholar 

  52. Conickx, G., Avila Cobos, F., van den Berge M., et al., MicroRNA profiling in lung tissue and bronchoalveolar lavage of cigarette smoke-exposed mice and in COPD patients: a translational approach, Sci. Rep., 2017, vol. 7, no. 1, pp. 1—14. https://doi.org/10.1038/s41598-017-13265-8

    Article  CAS  Google Scholar 

  53. Sanfiorenzo, C., Ilie, M.I., Belaid, A., et al., Two panels of plasma microRNAs as non-invasive biomarkers for prediction of recurrence in resectable NSCLC, PLoS One, 2013, vol. 8, no. 1. https://doi.org/10.1371/journal.pone.0054596

  54. Liu, F., Qin, H.-B., Xu, B., et al., Profiling of miRNAs in pediatric asthma: upregulation of miRNA-221 and miRNA-485-3p, Mol. Med. Rep., 2012, vol. 6, no. 5, pp. 1178—1182. https://doi.org/10.3892/mmr.2012.1030

    Article  CAS  PubMed  Google Scholar 

  55. Yang, K., Gao, B., Wei, W., et al., Changed profile of microRNAs in acute lung injury induced by cardio-pulmonary bypass and its mechanism involved with SIRT1, Int. J. Clin. Exp. Pathol., 2015, vol. 8, no. 2, p. 1104.

    PubMed  PubMed Central  Google Scholar 

  56. Shen, Y., Lu, H., and Song, G., MiR-221-3p and miR-92a-3p enhances smoking-induced inflammation in COPD, J. Clin. Lab. Anal., 2021, vol. 35, no. 7. https://doi.org/10.1002/jcla.23857

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Mohamadnia.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moattar-Husseini, N., Bahrami, N., Hosseini, F. et al. Expression Profile and Relationships between microRNAs as Biomarkers in COPD Patients. Russ J Genet 60, 433–449 (2024). https://doi.org/10.1134/S1022795424040082

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795424040082

Keywords:

Navigation