Skip to main content
Log in

Drosophila melanogaster MLE Helicase Functions Beyond Dosage Compensation: Molecular Nature and Pleiotropic Effect of mle[9] Mutation

  • MOLECULAR GENETICS
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

MLE of D. melanogaster is a conserved protein in higher eukaryotes, an ortholog of human DHX9 helicase. In mammals, this helicase has been shown to participate in different stages of gene expression. In D. melanogaster, the role of MLE as one of the components of the species-specific Dosage Compensation Complex has been extensively studied. However, the role of MLE in other processes has remained poorly understood. In this work, for the first time, the mle[9] mutation is mapped at the molecular level and shown to be caused by a deletion resulting in the loss of a highly conserved motif III in the catalytic core of the molecule. Thus, mle[9] specifically disrupts the helicase activity of the protein without affecting the function of other domains. The study of phenotypic manifestations of the mutation in females showed that in the homozygous state it has a pleiotropic effect. Without affecting survival, it significantly reduces fertility and lifespan. In addition, the duplication of scutellar macrochaetae was observed with high frequency. These results confirm that in D. melanogaster MLE helicase is involved in a wide range of gene expression regulation processes distinct from its role in dosage compensation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. Singleton, M.R., Dillingham, M.S., and Wigley, D.B., Structure and mechanism of helicases and nucleic acid translocases, Annu. Rev. Biochem., 2007, vol. 76, no. 1, pp. 23—50. https://doi.org/10.1146/annurev.biochem.76.052305.115300

    Article  CAS  PubMed  Google Scholar 

  2. Fairman-Williams, M.E., Guenther, U.-P., and Jankowsky, E., SF1 and SF2 helicases: family matters, Curr. Opin. Struct. Biol., 2010, vol. 20, no. 3, pp. 313—324. https://doi.org/10.1016/j.sbi.2010.03.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lee, C.G. and Hurwitz, J., Human RNA helicase A is homologous to the maleless protein of Drosophila, J. Biol. Chem., 1993, vol. 268, no. 22, pp. 16822—16830. https://doi.org/10.1016/S0021-9258(19)85490-X

    Article  CAS  PubMed  Google Scholar 

  4. Wei, W., Twell, D., and Lindsey, K., A novel nucleic acid helicase gene identified by promoter trapping in Arabidopsis, Plant J., 1997, vol. 11, no. 6, pp. 1307—1314. https://doi.org/10.1046/j.1365-313X.1997.11061307.x

    Article  CAS  PubMed  Google Scholar 

  5. Zhang, S., Maacke, H., and Grosse, F., Molecular cloning of the gene encoding nuclear DNA helicase II: a bovine homologue of human RNA helicase A and Drosophila Mle protein, J. Biol. Chem., 1995, vol. 27, no. 27, pp. 16422—16427. https://doi.org/10.1074/JBC.270.27.16422

    Article  Google Scholar 

  6. Lee, T. and Pelletier, J., The biology of DHX9 and its potential as a therapeutic target, Oncotarget, 2016, vol. 7, no. 27, pp. 42716—42739. https://doi.org/10.18632/oncotarget.8446

    Article  PubMed  PubMed Central  Google Scholar 

  7. Nikolenko, J.V., Georgieva, S.G., and Kopytova, D.V., Diversity of MLE helicase functions in the regulation of gene expression in higher eukaryotes, Mol. Biol., 2023, vol. 57, no. 1, pp. 10—23. https://doi.org/10.31857/S0026898423010123

    Article  CAS  Google Scholar 

  8. Prabu, J.R., Müller, M., Thomae, A.W., et al., Structure of the RNA helicase MLE reveals the molecular mechanisms for uridine specificity and RNA-ATP coupling, Mol. Cell, 2015, vol. 60, no. 3, pp. 487—499. https://doi.org/10.1016/j.molcel.2015.10.011

    Article  CAS  PubMed  Google Scholar 

  9. Aratani, S., Kageyama, Y., Nakamura, A., et al., MLE activates transcription via the minimal transactivation domain in Drosophila, Int. J. Mol. Med., 2008, vol. 21, no. 4, pp. 469—476. https://doi.org/10.3892/ijmm.21.4.469

    Article  CAS  PubMed  Google Scholar 

  10. Izzo, A., Regnard, C., Morales, V., et al., Structure-function analysis of the RNA helicase maleless, Nucleic Acids Res., 2008, vol. 36, no. 3, pp. 950—962. https://doi.org/10.1093/nar/gkm1108

    Article  CAS  PubMed  Google Scholar 

  11. Kuroda, M.I., Kernan, M.J., Kreber, R., et al., The maleless protein associates with the X chromosome to regulate dosage compensation in Drosophila, Cell, 1991, vol. 66, no. 5, pp. 935—947. https://doi.org/10.1016/0092-8674(91)90439-6

    Article  CAS  PubMed  Google Scholar 

  12. Lee, C.-G., The NTPase/helicase activities of Drosophila maleless, an essential factor in dosage compensation, EMBO J., 1997, vol. 16, no. 10, pp. 2671—2681. https://doi.org/10.1093/emboj/16.10.2671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kuroda, M.I., Hilfiker, A., Lucchesi, J.C., Dosage compensation in Drosophila—a model for the coordinate regulation of transcription, Genetics, 2016, vol. 204, no. 2, pp. 435–450. https://doi.org/10.1534/genetics.115.185108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Samata, M. and Akhtar, A., Dosage compensation of the X chromosome: a complex epigenetic assignment involving chromatin regulators and long noncoding RNAs, Annu. Rev. Biochem., 2018, vol. 87, pp. 323–350. https://doi.org/10.1146/annurev-biochem-062917-011816

    Article  CAS  PubMed  Google Scholar 

  15. Cugusi, S., Kallappagoudar, S., Ling, H., and Lucchesi, J.C., The Drosophila helicase Maleless (MLE) is implicated in functions distinct from its role in dosage compensation, Mol. Cell. Proteomics, 2015, vol. 14, no. 6, pp. 1478—1488. https://doi.org/10.1074/mcp.M114.040667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nikolenko, J.V., Kurshakova, M.M., and Krasnov, A.N., Multifunctional ENY2 protein interacts with RNA helicase MLE, Dokl. Biochem. Biophys., 2019, vol. 489, no. 1, pp. 407—410. https://doi.org/10.1134/S1607672919060140

    Article  CAS  PubMed  Google Scholar 

  17. Nikolenko, J.V., Kurshakova, M.M., Krasnov, A.N., and Georgieva, S.G., MLE helicase is a new participant in the transcription regulation of the ftz-f1 gene encoding nuclear receptor in higher eukaryotes, Dokl. Biochem. Biophys., 2021, vol. 496, no. 1, pp. 1—4. https://doi.org/10.1134/S1607672921010075

    Article  CAS  PubMed  Google Scholar 

  18. Kernan, M.J., Kuroda, M.I., Kreber, R. et al., napts, a mutation affecting sodium channel activity in Drosophila, is an allele of mle a regulator of X chromosome transcription, Cell, 1991, vol. 66, no. 5, pp. 949—959. https://doi.org/10.1016/0092-8674(91)90440-A

    Article  CAS  PubMed  Google Scholar 

  19. Nikolenko, J.V., Krasnov, A.N., and Vorobyeva, N.E., The SWI/SNF chromatin remodeling complex is involved in spatial organization of the ftz-f1 gene locus, Russ. J. Genet., 2019, vol. 55, no. 2, pp. 163—171. https://doi.org/10.1134/S1022795419020108

    Article  CAS  Google Scholar 

  20. Nikolenko, J.V., Krasnov, A.N., Mazina, M.Y., et al., Studying a novel ecdysone-dependent enhancer, Dokl. Biochem. Biophys., 2017, vol. 474, no. 1, pp. 236—238. https://doi.org/10.1134/S160767291703022X

    Article  CAS  PubMed  Google Scholar 

  21. Vorobyeva, N.E., Nikolenko J.V., Nabirochkina, E.N., et al., SAYP and Brahma are important for ‘repressive’ and ‘transient’ Pol II pausing, Nucleic Acids Res., 2012, vol. 40, no. 15, pp. 7319—7331. https://doi.org/10.1093/nar/gks472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fursova, N.A., Nikolenko, J.V., Soshnikova, N.V. et al., Zinc finger protein CG9890—new component of ENY2-containing complexes of Drosophila, Acta Nat., 2018, vol. 10, no. 4. https://doi.org/10.32607/20758251-2018-10-4-110-114

  23. Nikolenko, J.V., Vdovina, Y.A., Fefelova, E.I. et al., The SAGA deubiquitinilation (DUB) module participates in Pol III-dependent transcription, Mol. Biol., 2021, vol. 55, no. 3, pp. 432—440. https://doi.org/10.1134/S0026893321020278

    Article  CAS  Google Scholar 

  24. Kopytova, D.V., Krasnov, A.N., Orlova, A.V., et al., ENY2: couple, triple…more?, Cell Cycle, 2010, vol. 9, no. 3, pp. 479—481. https://doi.org/10.4161/cc.9.3.10610

    Article  CAS  PubMed  Google Scholar 

  25. Gurskiy, D., Orlova, A., Vorobyeva, N., et al., The DUBm subunit Sgf11 is required for mRNA export and interacts with Cbp80 in Drosophila, Nucleic Acids Res., 2012, vol. 40, no. 21, pp. 10689—10700. https://doi.org/10.1093/nar/gks857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Popova, V.V., Orlova, A.V., Kurshakova, M.M., et al., The role of SAGA coactivator complex in snRNA transcription, Cell Cycle, 2018, vol. 17, no. 15, pp. 1859—1870. https://doi.org/10.1080/15384101.2018.1489175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kopytova, D.V., Orlova, A.V., Krasnov, A.N., et al., Multifunctional factor ENY2 is associated with the THO complex and promotes its recruitment onto nascent mRNA, Genes Dev., 2010, vol. 24, no. 1, pp. 86—96. https://doi.org/10.1101/gad.550010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Morra, R., Smith, E.R., Yokoyama, R., and Lucchesi, J.C., The MLE subunit of the Drosophila MSL complex uses its ATPase activity for dosage compensation and its helicase activity for targeting, Mol. Cell. Biol., 2008, vol. 28, no. 3, pp. 958—966. https://doi.org/10.1128/MCB.00995-07

    Article  CAS  PubMed  Google Scholar 

  29. Pause, A. and Sonenberg, N., Mutational analysis of a DEAD box RNA helicase: the mammalian translation initiation factor eIF-4A, EMBO J., 1992, vol. 11, no. 7, pp. 2643—2654. https://doi.org/10.1002/J.1460-2075.1992.TB05330.X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Figueiredo, M.L.A., Kim, M., Philip, P., et al., Non-coding roX RNAs prevent the binding of the MSL-complex to heterochromatic regions, PLoS Genet., 2014, vol. 10, no. 12. https://doi.org/10.1371/JOURNAL.PGEN.1004865

  31. Fergestad, T., Ganetzky, B., and Palladino, M.J., Neuropathology in Drosophila membrane excitability mutants, Genetics, 2006, vol. 172, no. 2, pp. 1031—1042. https://doi.org/10.1534/GENETICS.105.050625

    Article  PubMed  PubMed Central  Google Scholar 

  32. Reenan, R.A., Hanrahan, C.J., and Ganetzky, B., The mlenapts RNA helicase mutation in Drosophila results in a splicing catastrophe of the para Na+ channel transcript in a region of RNA editing, Neuron, 2000, vol. 25, no. 1, pp. 139—149. https://doi.org/10.1016/S0896-6273(00)80878-8

    Article  CAS  PubMed  Google Scholar 

  33. Hanrahan, C.J., Palladino, M.J., Ganetzky, B., and Reenan, R.A., RNA editing of the Drosophila para Na+ channel transcript: evolutionary conservation and developmental regulation, Genetics, 2000, vol. 155, no. 3, pp. 1149—1160. https://doi.org/10.1093/genetics/155.3.1149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lee, T., Di Paola, D., Malina, A., et al., Suppression of the DHX9 helicase induces premature senescence in human diploid fibroblasts in a p53-dependent manner, J. Biol. Chem., 2014, vol. 289, no. 33, pp. 22798—22814. https://doi.org/10.1074/JBC.M114.56853535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pazos Obregón, F., Palazzo, M., Soto, P., et al., An improved catalogue of putative synaptic genes defined exclusively by temporal transcription profiles through an ensemble machine learning approach, BMC Genomics, 2019, vol. 20, no. 1, p. 1011. https://doi.org/10.1186/s12864-019-6380-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lin, S., Huang, Y., Lee, T., Nuclear receptor unfulfilled regulates axonal guidance and cell identity of Drosophila mushroom body neurons, PLoS One, 2009, vol. 4, no. 12. https://doi.org/10.1371/journal.pone.0008392

  37. Iyer, E.P., Iyer, S.C., Sullivan, L., et al., Functional genomic analyses of two morphologically distinct classes of Drosophila sensory neurons: post-mitotic roles of transcription factors in dendritic patterning, PLoS One, 2013, vol. 8, no. 8. https://doi.org/10.1371/journal.pone.0072434

  38. Boulanger, A., Clouet-Redt, C., Farge, M., et al., ftz-f1 and Hr39 opposing roles on EcR expression during Drosophila mushroom body neuron remodeling, Nat. Neurosci., 2011, vol. 14, no. 1, pp. 37—44.  https://doi.org/10.1038/nn.2700

    Article  CAS  PubMed  Google Scholar 

  39. Calame, D.G., Guo, T., Wang, C., et al., Monoallelic variation in DHX9, the gene encoding the DExH-box helicase DHX9, underlies neurodevelopment disorders and Charcot-Marie-Tooth disease, Am. J. Hum. Genet., 2023, vol. 110, no. 8, pp. 1394—1413. https://doi.org/10.1016/j.ajhg.2023.06.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Castelli, L.M., Benson, B.C., Huang, W.-P., et al., RNA helicases in microsatellite repeat expansion disorders and neurodegeneration, Front. Genet., 2022, vol. 13. https://doi.org/10.3389/fgene.2022.886563

  41. Walstrom, K.M., Schmidt, D., Bean, C.J., and Kelly, W.G., RNA helicase A is important for germline transcriptional control, proliferation, and meiosis in C. elegans, Mech. Dev., 2005, vol. 122, no. 5, pp. 707—720. https://doi.org/10.1016/J.MOD.2004.12.002

    Article  CAS  PubMed  Google Scholar 

  42. Campuzano, S. and Modolell, J., Patterning of the Drosophila nervous system: the achaete-scute gene complex, Trends Genet., 1992, vol. 8, no. 6, pp. 202—208. https://doi.org/10.1016/0168-9525(92)90234-U

    Article  CAS  PubMed  Google Scholar 

  43. Cubas, P., De Celis, J.F., Campuzano, S., and Modolell, J., Proneural clusters of achaete-scute expression and the generation of sensory organs in the Drosophila imaginal wing disc, Genes Dev., 1991, vol. 5, no. 6, pp. 996—1008. https://doi.org/10.1101/GAD.5.6.996

    Article  CAS  PubMed  Google Scholar 

  44. Villares, R. and Cabrera, C.V., The achaete-scute gene complex of D. melanogaster: conserved domains in a subset of genes required for neurogenesis and their homology to myc, Cell, 1987, vol. 50, no. 3, pp. 415—424. https://doi.org/10.1016/0092-8674(87)90495-8

    Article  CAS  PubMed  Google Scholar 

  45. Cabrera, C.V. and Alonso, M.C., Transcriptional activation by heterodimers of the achaete-scute and daughterless gene products of Drosophila, EMBO J., 1991, vol. 10, no.10, pp. 2965—2974. https://doi.org/10.1002/J.1460-2075.1991.TB07847.X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Usui, K., Goldstone, C., Gibert, J.-M., and Simpson, P., Redundant mechanisms mediate bristle patterning on the Drosophila thorax, Proc. Natl. Acad. Sci. U.S.A., 2008, vol. 105, no. 51, pp. 20112—20117. https://doi.org/10.1073/pnas.0804282105

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (project no. 23-24-00357).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. V. Nikolenko.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

No approval of research ethics committees was required to accomplish the goals of this study because experimental work was conducted with an unregulated invertebrate species.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashniev, G.A., Georgieva, S.G. & Nikolenko, J.V. Drosophila melanogaster MLE Helicase Functions Beyond Dosage Compensation: Molecular Nature and Pleiotropic Effect of mle[9] Mutation. Russ J Genet 60, 460–470 (2024). https://doi.org/10.1134/S1022795424040033

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795424040033

Keywords:

Navigation