Skip to main content
Log in

Development Immune-Related Prognostic Model and LncRNA-miRNA-mRNA ceRNA Network for Cervical Cancer

  • HUMAN GENETICS
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Cervical cancer is a serious threat to women’s health. The aim of this study was to provide new insights into the mechanism of cervical cancer by constructing immune-related prognostic model and ceRNA network. The mRNA and circRNA datasets of cervical cancer were downloaded from NCBI GEO database. Wilcox.test was used to screen the differential immune cells between cervical cancer patients and normal participants. WGCNA was performed for identification immune related genes. A circRNA-lncRNA-mRNA network was constructed and the genes in the network were further screened for genes related to prognosis using survival package in R software. The prognostic risk model was further validated in the TCGA database. Finally, GSEA was performed to investigate the different enrichment pathways between high_risk and low_risk groups. Nine genes (BEX4, CCL14, CCL3, CMPK2, FMOD, GHR, HLF, IGFBP5, PAG1) were selected to construct the prognostic model. Patients in the low_risk group had a significantly better prognosis than those in the high_risk group. hsa_circ_0021727-hsa-miR-133b-PAG1 regulatory axis may participate in the regulatory of cervical cancer. The enrichment pathways to patients in the high-risk group and the low-risk group were different. The results were not validated by in vitro and in vivo experiments. We developed an immune-related prognostic model and lncRNA-miRNA-mRNA ceRNA network, which can predict prognosis and understand the mechanism of cervical cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 5.
Fig. 6.

DATA AVAILABILITY

All data generated or analyzed during this study are included in this article and its supplementary material files. Further enquiries can be directed to the corresponding author.

REFERENCES

  1. Hull, R., Mbele, M., Makhafola, T., et al., Cervical cancer in low and middle‑income countries, Oncol. Lett., 2020, vol. 20, no. 3, pp. 2058—2074.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Yuan, Y., Cai, X., Shen, F., et al., HPV post-infection microenvironment and cervical cancer, Cancer Lett., 2021, vol. 497, pp. 243—254.

    Article  CAS  PubMed  Google Scholar 

  3. Hashim, D., Engesæter, B., Skare, G.B., et al., Real-world data on cervical cancer risk stratification by cytology and HPV genotype to inform the management of HPV-positive women in routine cervical screening, Brit. J. Cancer, 2020, vol. 122, no. 11, pp. 1715—1723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wang, J., Wang, T., Yang, Y.Y., et al., Patient age, tumor appearance and tumor size are risk factors for early recurrence of cervical cancer, Mol. Clin. Oncol., 2015, vol. 3, no. 2, pp. 363—366.

    Article  PubMed  Google Scholar 

  5. Nahand, J.S., Vandchali, N.R., Darabi, H., et al., Exosomal microRNAs: novel players in cervical cancer, Epigenomics, 2020, vol. 12, no. 18, pp. 1651—1660.

    Article  CAS  PubMed  Google Scholar 

  6. Chen, R.X., Liu, H.L., Yang, L.L., et al., Circular RNA circRNA_0000285 promotes cervical cancer development by regulating FUS, Eur. Rev. Med. Pharmacol. Sci., 2019, vol. 23, no. 20, pp. 8771—8778.

    PubMed  Google Scholar 

  7. Patop, I.L., Wüst, S., and Kadener, S., Past, present, and future of circRNAs, EMBO J., 2019, vol. 38, no. 16, p. e100836.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Wu, W. and Zou, J., Studies on the role of circRNAs in osteoarthritis, Biomed. Res. Int., 2021, vol. 2021, p. 8231414.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kulcheski, F.R., Christoff, A.P., and Margis, R., Circular RNAs are miRNA sponges and can be used as a new class of biomarker, J. Biotechnol., 2016, vol. 238, pp. 42—51.

    Article  CAS  PubMed  Google Scholar 

  10. Xu, Y., Qiu, A., Peng, F., et al., Exosomal transfer of circular RNA FBXW7 ameliorates the chemoresistance to oxaliplatin in colorectal cancer by sponging miR-18b-5p, Neoplasma, 2021, vol. 68, no. 1, pp. 108—118.

    Article  CAS  PubMed  Google Scholar 

  11. Gao, Y.L., Zhang, M.Y., Xu, B., et al., Circular RNA expression profiles reveal that hsa_circ_0018289 is up-regulated in cervical cancer and promotes the tumorigenesis, Oncotarget, 2017, vol. 8, no. 49, pp. 86625—86633.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Liu, J., Wang, D., Long, Z., et al., CircRNA8924 promotes cervical cancer cell proliferation, migration and invasion by competitively binding to MiR-518d-5p /519-5p family and modulating the expression of CBX8, Cell Physiol. Biochem., 2018, vol. 48, no. 1, pp. 173—184.

    Article  CAS  PubMed  Google Scholar 

  13. Tian, J.D.C. and Liang, L., Involvement of circular RNA SMARCA5/microRNA-620 axis in the regulation of cervical cancer cell proliferation, invasion and migration, Eur. Rev. Med. Pharmacol. Sci., 2018, vol. 22, no. 24, pp. 8589—8598.

    PubMed  Google Scholar 

  14. Fridman, W.H., Zitvogel, L., Sautès-Fridman, C., et al., The immune contexture in cancer prognosis and treatment, Nat. Rev. Clin. Oncol., 2017, vol. 14, no. 12, pp. 717—734.

    Article  CAS  PubMed  Google Scholar 

  15. Li, R., Liu, Y., Yin, R., et al., The dynamic alternation of local and systemic tumor immune microenvironment during concurrent chemoradiotherapy of cervical cancer: a prospective clinical trial, Int. J. Radiat. Oncol. Biol. Phys., 2021, vol. 110, no. 5.

  16. Zappa, C. and Mousa, S.A., Non-small cell lung cancer: current treatment and future advances, Transl. Lung Cancer R., vol. 5, no. 3, pp. 288—300.

  17. Barrett, T., Suzek, T.O., Troup, D.B., et al., NCBI GEO: mining millions of expression profiles—database and tools, Nucleic Acids Res., 2005, vol. 33, suppl. 1, pp. D562—D566.

    Article  CAS  PubMed  Google Scholar 

  18. Leek, J.T., Johnson, W.E., Parker, H.S., et al., The SVA package for removing batch effects and other unwanted variation in high-throughput experiments, Bioinformatics, 2012, vol. 28, no. 6, pp. 882—883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nikolayeva, O. and Robinson, M.D., edgeR for differential RNA-seq and ChIP-seq analysis: an application to stem cell biology, in Stem Cell Transcriptional Networks, Kidder, B., Ed., Methods in Molecular Biology, New York: Humana Press, 2014, vol. 1150, pp. 45—79. https://doi.org/10.1007/978-1-4939-0512-6_3

  20. Robinson, M.D., McCarthy, D.J. and Smyth, G.K., edgeR: a bioconductor package for differential expression analysis of digital gene expression data, Bioinformatics, 2010, vol. 26, no. 1, pp. 139—140.

    Article  CAS  PubMed  Google Scholar 

  21. Gu, Z. and Huebschmann, D., simplifyEnrichment: an R/bioconductor package for clustering and visualizing functional enrichment results, genomics proteomics Bioinformatics, 2021, vol. 21, no. 1, pp. 190—202.

    Google Scholar 

  22. Szklarczyk, D., Franceschini, A., Wyder, S., et al., STRING v10: protein—protein interaction networks, integrated over the tree of life, Nucleic Acids Res., 2015, vol. 43, no. D1, pp. D447—D452.

    Article  CAS  PubMed  Google Scholar 

  23. Smyth, G.K., Ritchie, M., Thorne, N., et al., LIMMA: linear models for microarray data, in Bioinformatics and Computational Biology Solutions Using R and Bioconductor Statistics for Biology and Health, 2005.

  24. Ashburner, M., Ball, C., Blake, J., et al., Gene Ontology: tool for the unification of biology, Nat. Genet., 2000, vol. 25, pp. 25—29. https://doi.org/10.1038/75556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kanehisa, M. and Goto, S., KEGG: Kyoto encyclopedia of genes and genomes, Nucleic Acids Res., 2000, vol. 28, no. 1, pp. 27—30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yu, G., Wang, L.-G., Han, Y., et al., clusterProfiler: an R package for comparing biological themes among gene clusters, Omics, 2012, vol. 16, no. 5, pp. 284—287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Therneau, T. and Lumley, T., R Survival Package, 2013.

  28. Sohn, I., Kim, J., Jung, S.-H., et al., Gradient lasso for Cox proportional hazards model, Bioinformatics, 2009, vol. 25, no. 14, pp. 1775—1781.

    Article  CAS  PubMed  Google Scholar 

  29. Friedman, J., Hastie, T. and Tibshirani, R., Regularization paths for generalized linear models via coordinate descent, J. Stat. Software, 2010, vol. 33, no. 1, p. 1.

    Article  Google Scholar 

  30. Van Meir, H., Nout, R., Welters, M., et al., Impact of (chemo)radiotherapy on immune cell composition and function in cervical cancer patients, Oncoimmunology, 2017, vol. 6, no. 2, p. e1267095.

    Article  CAS  PubMed  Google Scholar 

  31. Stone, S.C., Rossetti, R.A.M., Alvarez, K.L.F., et al., Lactate secreted by cervical cancer cells modulates macrophage phenotype, J. Leukoc. Biol., 2019, vol. 105, no. 5, pp. 1041—1054.

    Article  CAS  PubMed  Google Scholar 

  32. Liu, Y., Li, L., Li, Y., et al., Research progress on tumor-associated macrophages and inflammation in cervical cancer, Biomed. Res. Int., 2020, vol. 2020, p. 6842963. https://doi.org/10.1155/2020/6842963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yang, L., Yang, Y., Meng, M., et al., Identification of prognosis-related genes in the cervical cancer immune microenvironment, Gene, 2021, vol. 766, p. 145119.

    Article  CAS  PubMed  Google Scholar 

  34. van Leeuwen, E.M., Sprent, J. and Surh, C.D., Generation and maintenance of memory CD4+ T cells, Curr. Opin. Immunol., 2009, vol. 21, no. 2, pp. 167—172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Liu, W., Chen, B., Yao, J., et al., Identification of fish CMPK2 as an interferon stimulated gene against SVCV infection, Fish Shellfish Immun., 2019, vol. 92, pp. 125—132.

    Article  CAS  Google Scholar 

  36. Lai, J.-H., Hung, L.-F., Huang, C.-Y., et al., Mitochondrial protein CMPK2 regulates IFN alpha-enhanced foam cell formation, potentially contributing to premature atherosclerosis in SLE, Arthritis Res. Ther., 2021, vol. 23, no. 1, pp. 1—12.

    Article  Google Scholar 

  37. Korbecki, J., Grochans, S., Gutowska, I., et al., CC chemokines in a tumor: a review of pro-cancer and anti-cancer properties of receptors CCR5, CCR6, CCR7, CCR8, CCR9, and CCR10 ligands, Int. J. Mol. Sci., 2020, vol. 21, no. 20.

  38. Halle, M.K., Munk, A.C., Engesæter, B., et al., A gene signature identifying CIN3 regression and cervical cancer survival, Cancers, 2021, vol. 13, no. 22, p. 5737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ayala-Calvillo, E., Mojica-Vázquez, L.H., García-Carrancá, A., et al., Wnt/β‑catenin pathway activation and silencing of the APC gene in HPV‑positive human cervical cancer‑derived cells, Mol. Med. Rep., 2018, vol. 17, no. 1, pp. 200—208.

    CAS  PubMed  Google Scholar 

  40. Ben-Sahra, I. and Manning, B.D., mTORC1 signaling and the metabolic control of cell growth, Curr. Opin. Cell Biol., 2017, vol. 45, pp. 72—82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bossler, F., Hoppe-Seyler, K. and Hoppe-Seyler, F., PI3K/AKT/mTOR signaling regulates the virus/host cell crosstalk in HPV-positive cervical cancer cells, Int. J. Mol. Sci., 2019, vol. 20, no. 9, p. 2188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Dan, V.M., Muralikrishnan, B., Sanawar, R., et al., Streptomyces sp. metabolite(s) promotes Bax mediated intrinsic apoptosis and autophagy involving inhibition of mTOR pathway in cervical cancer cell lines, Sci. Rep., 2018, vol. 8, no. 1, pp. 1—13.

    Article  Google Scholar 

  43. Shi, W., Gerster, K., Alajez, N.M., et al., MicroRNA-301 mediates proliferation and invasion in human breast cancer, Cancer Res., 2011, vol. 71, no. 8, pp. 2926—2937.

    Article  CAS  PubMed  Google Scholar 

  44. Qin, S., Gao, Y., Yang, Y., et al., Identifying molecular markers of cervical cancer based on competing endogenous RNA network analysis, Gynecol. Obstet. Invest., 2019, vol. 84, no. 4, pp. 350—359.

    Article  CAS  PubMed  Google Scholar 

  45. Agarwal, S., Ghosh, R., Chen, Z., et al., Transmembrane adaptor protein PAG1 is a novel tumor suppressor in neuroblastoma, Oncotarget, 2016, vol. 7, no. 17, p. 24018.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Luo, Q., Zhang, L., Fang, L., et al., Circular RNAs hsa_circ_0000479 in peripheral blood mononuclear cells as novel biomarkers for systemic lupus erythematosus, Autoimmunity, 2020, vol. 53, no. 3, pp. 167—176.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

Not applicable.

Funding

This work was supported by the Huai’an Natural Science Research Program (HAB202206).

Author information

Authors and Affiliations

Authors

Contributions

Hongge Xu and Can Shi carried out the Conception and design of the research, Yingchun Gao participated in the Acquisition of data. Ting Zhang carried out the Analysis and interpretation of data. Jueying Zhao carried out in the design of the study and performed the statistical analysis. Can Shi and Hongge Xu conceived of the study, and participated in its design and coordination and helped to draft the manuscript and revision of manuscript for important intellectual content. All authors read and approved the final manuscript.

Corresponding author

Correspondence to C. Shi.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflict of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

11177_2024_1910_MOESM1_ESM.pdf

11177_2024_1910_MOESM2_ESM.pdf

11177_2024_1910_MOESM3_ESM.pdf

11177_2024_1910_MOESM4_ESM.pdf

11177_2024_1910_MOESM5_ESM.pdf

11177_2024_1910_MOESM6_ESM.docx

Suppl. Fig. S1. Uniform manifold approximation and orojection for dimension reduction. (а) UMAP of samples before batch removal; (b) UMAP of samples after batch removal.

Suppl. Fig. S2. Flow chart.

Suppl. Fig. S3. The infiltration level of immune cells in the samples.

Suppl. Fig. S4. Parameters of LASSO model. (а) LASSO coefficient profiles; (b) LASSO deviance profiles.

Suppl. Fig. S5. ceRNA network of genes related with prognosis. The green circle and the red circle represent down-regulated and up-regulated genes, respectively. The blue and purple diamonds indicate down-regulation and up-regulation of circRNA, respectively. The triangle represents miRNA. The gray line indicates that circRNA competes to bind miRNA. The green connection indicates that miRNA regulates gene.

Suppl. Table S1. The information of enrolled database.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, H., Zhao, J., Zhang, T. et al. Development Immune-Related Prognostic Model and LncRNA-miRNA-mRNA ceRNA Network for Cervical Cancer. Russ J Genet 60, 375–386 (2024). https://doi.org/10.1134/S1022795424030165

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795424030165

Keywords:

Navigation