Skip to main content
Log in

Exosomal miRNA-146a and miRNA-424 as Possible Predictors of Immune Checkpoint Inhibitors Therapy Response in Clear Cell Renal Cell Carcinoma

  • HUMAN GENETICS
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Clear cell renal cell carcinoma (ccRCC) is a malignant kidney tumour with a poor prognosis and difficult to treat. Despite significant advances in the treatment of ccRCC, immune checkpoint inhibitors (ICI) still have limited therapeutic efficacy. A growing number of investigations has demonstrated that exosomal miRNAs are key modulators of tumour signaling and determinants of the tumour microenvironment. Disruption of miRNA regulation may affect ccRCC immunogenicity and response to ICI therapy, making them attractive for use as prognostic molecular genetic biomarkers. We evaluated exosomal miRNAs (miRNA-424, -146a, -503, -144) expression levels before and after ICI therapy in plasma samples obtained from 42 ccRCC patients. Expression analysis was performed using real-time PCR method. The results showed that the expression levels of miRNA-424 and miRNA-146a were upregulated after ICI therapy treatment (miRNA-424 = Mean ± SEM 1.202 ± 0.15 and miRNA-146a = 12.22 ± 1.45) compared expression levels before therapy (miRNA-424 = Mean ± SEM 0.63 ± 0.17; p-value = 0.03 and miRNA-146a = 7.03 ± 0.90; p-value = 0.006). miRNA-424 and miRNA-146a can be used to create a panel of molecular markers for evaluating the effectiveness of immune checkpoint inhibitors therapy. Even though the results are preliminary and requires further studying on a larger cohorts, it further increases the interest in using miRNAs, as additional ICI therapeutic markers capable of modulating immune tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Najberg, M., Mansor, M.H., Boury, F., et al., Reversing the tumor target: establishment of a tumor trap, Front. Pharmacol., 2019, vol. 10. https://doi.org/10.3389/fphar.2019.00887

  2. Jackson, C.M., Choi, J., and Lim, M., Mechanisms of immunotherapy resistance: lessons from glioblastoma, Nat. Immunol., 2019, vol. 20, no. 9, pp. 1100—1109. https://doi.org/10.1038/s41590-019-0433-y

    Article  CAS  PubMed  Google Scholar 

  3. Gilyazova, I.R., Asadullina, D.D., Ivanova, E.A., et al., Germline mutations as possible biomarkers of immune checkpoint inhibitor therapy efficacy in patients with renal cell carcinoma (mini review), Res. Results Biomed., 2022, vol. 8, no. 2, pp. 164—179. https://doi.org/10.18413/2658-6533-2022-8-2-0-3

    Article  Google Scholar 

  4. Vishnoi, A. and Rani, S., miRNA biogenesis and regulation of diseases: an updated overview, in MicroRNA Profiling, Rani, S., Ed., Methods in Molecular Biology, New York: Humana, 2023, vol. 2595, pp. 1—12. https://doi.org/10.1007/978-1-0716-2823-2_1

  5. Hill, M. and Tran, N., miRNA interplay: mechanisms and consequences in cancer, Dis. Model Mech., 2021, vol. 14, no. 4. https://doi.org/10.1242/dmm.047662

  6. Khan, A., Ahmed, E.I., Elareer, N.R., et al., Role of miRNA‑regulated cancer stem cells in the pathogenesis of human malignancies, Cells, 2019, vol. 8, no. 8. https://doi.org/10.3390/cells8080840

  7. Hussen, B.M., Hidayat, H.J., Salihi, A., et al., MicroRNA: a signature for cancer progression, Biomed. Pharmacother., 2021, vol. 138. https://doi.org/10.1016/j.biopha.2021.111528

  8. He, B., Zhao, Zh., Cai, Q., et al., miRNA-based biomarkers, therapies, and resistance in cancer, Int. J. Biol. Sci., 2020, vol. 16, no. 14, pp. 2628—2647. https://doi.org/10.7150/ijbs.47203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tao, M., Zheng, M., Xu, Y., et al., CircRNAs and their regulatory roles in cancers, Mol. Med., 2021, vol. 27, no. 1, p. 94. https://doi.org/10.1186/s10020-021-00359-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ivanova, E., Asadullina, D., Gilyazova, G., et al., Exosomal microRNA levels associated with immune checkpoint inhibitor therapy in clear cell renal cell carcinoma, Biomedicines, 2023, vol. 11, no. 3. https://doi.org/10.3390/biomedicines11030801

  11. Wang, Z., Han, J., Cui, Y., et al., Circulating microRNA‑21 as noninvasive predictive biomarker for response in cancer immunotherapy, Med. Hypotheses, 2013, vol. 81, no. 1, pp. 41—43. https://doi.org/10.1016/j.mehy.2013.03.001

    Article  CAS  PubMed  Google Scholar 

  12. Chen, L., Gibbons, D.L., Goswami, S., et al., Metastasis is regulated via microRNA-200/ZEB1 axis control of tumour cell PD-L1 expression and intratumoral immunosuppression, Nat. Commun., 2014, vol. 5, no. 1. https://doi.org/10.1038/ncomms6241

  13. Cortez, M.A., Ivan, C., Valdecanas, D., et al., PDL1 regulation by p53 via miR-34, J. Nat. Cancer Inst., 2016, vol. 108, no. 1. https://doi.org/10.1093/jnci/djv303

  14. Rodriguez-Barrueco, R., Nekritz, E.A., Bertucci, F., et al., miR-424(322)/503 is a breast cancer tumor suppressor whose loss promotes resistance to chemotherapy, Genes Dev., 2017, vol. 31, no. 6, pp. 553—566. https://doi.org/10.1101/gad.292318.116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lu, L., Wu, M., Lu, Y., et al., MicroRNA-424 regulates cisplatin resistance of gastric cancer by targeting SMURF1 based on GEO database and primary validation in human gastric cancer tissues, OncoTargets Ther., 2019, vol. 12, pp. 7623—7636. https://doi.org/10.2147/OTT.S208275

    Article  CAS  Google Scholar 

  16. Li, Y., Liu, H., Cui, Y., et al., miR-424-3p contributes to the malignant progression and chemoresistance of gastric cancer, OncoTargets Ther., 2020, vol. 13, pp. 12201—12211. https://doi.org/10.2147/OTT.S280717

    Article  CAS  Google Scholar 

  17. Zhang, D., Shi, Z., Li, M., et al., Hypoxia-induced miR-424 decreases tumor sensitivity to chemotherapy by inhibiting apoptosis, Cell Death Dis., 2014, vol. 5, no. 6, р. е1301. https://doi.org/10.1038/cddis.2014.240

  18. Bieg, D., Sypniewski, D., Nowak, E., et al., MiR-424-3p suppresses galectin-3 expression and sensitizes ovarian cancer cells to cisplatin, Arch. Gynecol. Obstet., 2019, vol. 299, no. 4, pp. 1077—1087. https://doi.org/10.1007/s00404-018-4999-7

    Article  CAS  PubMed  Google Scholar 

  19. Holmgren, G., Synnergren, J., Andersson, Ch.X., et al., MicroRNAs as potential biomarkers for doxorubicin-induced cardiotoxicity, Toxicol. Vitro, 2016, vol. 34, pp. 26—34. https://doi.org/10.1016/j.tiv.2016.03.009

    Article  CAS  Google Scholar 

  20. Li, R., Ruan, Q., Zheng, J., et al., LINC01116 promotes doxorubicin resistance in osteosarcoma by epigenetically silencing miR-424-5p and inducing epithelial-mesenchymal transition, Front. Pharmacol., 2021, vol. 12. https://doi.org/10.3389/fphar.2021.632206

  21. Ralla, B., Busch, J., Flörcken, A., et al., MiR-9-5p in nephrectomy specimens is a potential predictor of primary resistance to first-line treatment with tyrosine kinase inhibitors in patients with metastatic renal cell carcinoma, Cancers (Basel), 2018, vol. 10, no. 9. https://doi.org/10.3390/cancers10090321

  22. Gámez-Pozo, A., Antón-Aparicio, L.M., Bayona, Ch., et al., MicroRNA expression profiling of peripheral blood samples predicts resistance to first-line sunitinib in advanced renal cell carcinoma patients, Neoplasia, 2012, vol. 14, no. 12, pp. 1144—1150. https://doi.org/10.1593/neo.12734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kovacova, J., Juracek, J., Poprach, Al., et al., MiR-376b-3p is associated with long-term response to sunitinib in metastatic renal cell carcinoma patients, Cancer Genomics—Proteomics, 2019, vol. 16, no. 5, pp. 353—359. https://doi.org/10.21873/cgp.20140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. He, J., He, J., Min, L., et al., Extracellular vesicles transmitted miR-31-5p promotes sorafenib resistance by targeting MLH1 in renal cell carcinoma, Int. J. Cancer, 2020, vol. 146, no. 4, pp. 1052—1063. https://doi.org/10.1002/ijc.32543

    Article  CAS  PubMed  Google Scholar 

  25. Liu, Y., Xie, Q., Ma, Y., et al., Nanobubbles containing PD-L1 Ab and miR-424 mediated PD-L1 blockade, and its expression inhibition to enable and potentiate hepatocellular carcinoma immunotherapy in mice, Int. J. Pharm., 2022, vol. 629. https://doi.org/10.1016/j.ijpharm.2022.122352

  26. Mastroianni, J., Stickel, N., Andrlova, H., et al., miR-146a controls immune response in the melanoma microenvironment, Cancer Res., 2019, vol. 79, no. 1, pp. 183—195. https://doi.org/10.1158/0008-5472.CAN-18-1397

    Article  CAS  PubMed  Google Scholar 

  27. Marschner, D., Falk, M., Javorniczky, N.R., et al., MicroRNA-146a regulates immune-related adverse events caused by immune checkpoint inhibitors, JCI Insight, 2020, vol. 5, no. 6. https://doi.org/10.1172/jci.insight.132334

  28. Bhaumik, D., Scott, G.K., Schokrpur, S., et al., Expression of microRNA-146 suppresses NF-κB activity with reduction of metastatic potential in breast cancer cells, Oncogene, 2008, vol. 27, no. 42, pp. 5643—5647. https://doi.org/10.1038/onc.2008.171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang, G., Gu, Y., Xu, N., et al., Decreased expression of miR-150, miR146a and miR424 in type 1 diabetic patients: association with ongoing islet autoimmunity, Biochem. Biophys. Res. Commun., 2018, vol. 498, no. 3, pp. 382—387. https://doi.org/10.1016/j.bbrc.2017.06.196

    Article  CAS  PubMed  Google Scholar 

  30. Peng, X.-X., Yu, R., Wu, X., et al., Correlation of plasma exosomal microRNAs with the efficacy of immunotherapy in EGFR/ALK wild-type advanced non-small cell lung cancer, J. Immunother. Cancer, 2020, vol. 8, no. 1. https://doi.org/10.1136/jitc-2019-000376

  31. Halvorsen, A.R., Sandhu, V., Sprauten, M., et al., Circulating microRNAs associated with prolonged overall survival in lung cancer patients treated with nivolumab, Acta. Oncol. (Madrid), 2018, vol. 57, no. 9, pp. 1225—1231. https://doi.org/10.1080/0284186X.2018.1465585

    Article  CAS  PubMed  Google Scholar 

  32. Boeri, M., Milione, M., Proto, Cl., et al., Circulating miRNAs and PD-L1 tumor expression are associated with survival in advanced NSCLC patients treated with immunotherapy: a prospective study, Clin. Cancer Res., 2019, vol. 25, no. 7, pp. 2166—2173. https://doi.org/10.1158/1078-0432.CCR-18-1981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rajakumar, T., Horos, R., Jehn, J., et al., A blood-based miRNA signature with prognostic value for overall survival in advanced stage non-small cell lung cancer treated with immunotherapy, NPJ Precis. Oncol., 2022, vol. 6, no. 1, p. 19. https://doi.org/10.1038/s41698-022-00262-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Pantano, F., Zalfa, Fr., Iuliani, M., et al., Large-scale profiling of extracellular vesicles identified miR-625-5p as a novel biomarker of immunotherapy response in advanced non-small-cell lung cancer patients, Cancers (Basel), 2022, vol. 14, no. 10. https://doi.org/10.3390/cancers14102435

Download references

Funding

The study was supported by the Russian Science Foundation grant no. 23-25-00392, available at https://rscf.ru/project/23-25-00392/.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. D. Asadullina or I. R. Gilyazova.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

The study was approved by the Ethics Committee of the Institute of Biochemistry and Genetics—Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, protocol No. 11 dated October 27, 2014. Informed consent was obtained from all individual participants involved in the study. All participants were adults.

Written informed consent form for the collection of biological samples and molecular-genetic analysis was obtained from each patient.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asadullina, D.D., Gilyazova, I.R., Ivanova, E.A. et al. Exosomal miRNA-146a and miRNA-424 as Possible Predictors of Immune Checkpoint Inhibitors Therapy Response in Clear Cell Renal Cell Carcinoma. Russ J Genet 60, 367–374 (2024). https://doi.org/10.1134/S1022795424030025

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795424030025

Keywords:

Navigation