Skip to main content
Log in

Genetic Differentiation and Clonality in a Local Population of the Caucasian Endemic Trifolium polyphyllum C.A. Mey. (Fabacae)

  • PLANT GENETICS
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Trifolium polyphyllum is a Caucasian endemic of the Fabaceae family peculiar for its inability of nitrogen fixation. Despite this unique trait, the species is insufficiently studied; in particular, little is known about its propagation and dispersal modes. Analyses of ISSR markers in specimens from a population at the Malaya Khatipara Mountain revealed that the species is capable of both sexual and vegetative propagation; however, the former mode dominates. We found out that separate patches within a local population are considerably genetically differentiated within an area of about 2000 m2 (PhiPT = 0.349; p = 0.001). We suppose this may happen owing to a lack of adaptations to seed dispersal. We also suppose that the observed concentration of genetically admixed individuals in the upper parts of slopes is due to peculiarities of the behavior of pollinators. The size of vegetative clones does not exceed 1 m2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Adzhieva, R.B. and Onipchenko, V.G., Restoration of biomass of aboveground alpine plant shoots after defoliation, Tr. Teberdinskogo Gos. Zapov., 2004, issue 21, pp. 16–29.

  2. Gamtsemlidze, Z.G., Structure and rhythm of plant development in the subnival belt of the Central Caucasus, Extended Abstract of Cand. Sci. Dissertation, Tbilisi, 1980.

  3. Nakhutsrishvili, G. and Gamtsemlidze, Z.G., Zhizn’ rastenii v ekstremal’nykh usloviyakh vysokogorii (na primere Tsentral’nogo Kavkaza) (Plant Life in Extremal Environment of the High Mountains (on the Example of the Central Caucasus)), Leningrad: Nauka, 1984.

  4. Shkhagapsoev, S.Kh., Ekologo-biologicheskie osobennosti redkikh i ischezayushchikh rastenii Kabardino-Balkarii (Ecological and Biological Characteristics of Rare and Endangered Plants of Kabardino-Balkaria), Nal’chik: Kabardino-Balkarskii Gos. Univ., 1994.

  5. Nozadze, L.M., Mycosymbiotrophism of herbaceous plants from the limestone mountains of Western Georgia, in Mikoriza i drugie formy konsortivnykh svyazei v prirode (Mycorrhiza and Other Forms of Consortium in Nature), Perm’, 1987, pp. 29—36.

  6. Makarov, M.I., Onipchenko, V.G., Malysheva, T.I., et al., Determinants of 15N natural abundance in leaves of co-occurring plant species and types within an alpine lichen heath in the Northern Caucasus, Arct. Antarct. Alp. Res., 2014, vol. 46, pp. 581—590.

    Article  ADS  Google Scholar 

  7. Makarov, M.I., Onipchenko, V.G., Malysheva, T.I., et al., Symbiotic nitrogen fixation by legumes in alpine ecosystems: a vegetation experiment, Russ. J. Ecol., 2021, vol. 52, no. 1, pp. 9—17. https://doi.org/10.1134/S1067413621010094

    Article  CAS  Google Scholar 

  8. Aksenova, A.A. and Onipchenko, V.G., Assessment of the influence of Trifolium polyphyllum on the composition of alpine lichen heaths, Tr. Teberdinskogo Gos. Zapov., 2003, issue 20, pp. 114—117.

  9. Onipchenko, V.G., Structure, phytomass and productivity of alpine lichen heaths, Byull. Mosk. O-va Ispyt. Prir., Otd. Biol., 1985, vol. 90, no. 1, pp. 59—66.

    Google Scholar 

  10. Akatov, V.V. and Akatova, T.V., Changes in phytocenoses of high-mountain meadows and heathlands of the Lagonaki Highlands (Western Caucasus) over the past 15—20 years, Rastit. Ross., 2012, no. 21, pp. 3—12.

  11. Akatov, V.V., The role of intercoenotic plant migrations in the formation of alpine plant communities of the Western Caucasus, Bot. Zh., 1997, vol. 82, no. 10, pp. 111—120.

    Google Scholar 

  12. Nakhutsrishvili, G. and Gagnidze, R.I., Die subnivale und nivale Hochgebirgsvegetation des Kaukasus, Phytocoenosis, 1999, vol. 11, no. 2, pp. 173—183.

    Google Scholar 

  13. Egorov, A.V. and Onipchenko, V.G., Revision of the subnival flora of the Teberda Nature Reserve, Tr. Teberdinskogo Gos. Zapov., 2003, issue 20, pp. 54—59.

  14. Kurashev, A.S., Antecology of entomophilous alpine plants in the northwestern Caucasus: II. Duration and rhythm of flowering, Yug Ross.: Ekol., Razvit., 2012, no. 2, pp. 59—67.

  15. Bobrov, E.G., Genus 792: clover—Trifolium L., in Flora SSSR (Flora of the Soviet Union), Moscow: Akad. Nauk SSSR, 1945, vol. 11, pp. 189—261.

    Google Scholar 

  16. Trifonova, A.A., Kochieva, E.Z., and Kudryavtsev, A.M., Low level of genetic differentiation between populations of the rare species Allium regelianum A.K. Becker ex Iljin from the Volgograd region as revealed by ISSR-analysis, Ekol. Genet., 2017, vol. 15, no. 1, pp. 30—37. https://doi.org/10.17816/ecogen15130-37

    Article  Google Scholar 

  17. Dangi, R.S., Lagu, M.D., Choundhary, L.B., et al., Assessment of genetic diversity in Trigonella foenum-graecum and Trigonella caerulea using ISSR and RAPD markers, BMC Plant Biol., 2004, no. 4, p. 13. https://doi.org/10.1186/1471-2229-4-13

  18. Wu, Z.-H., Shi, J., Xi, M.-L., et al., Inter-simple sequence repeat data reveals high genetic diversity in wild populations of the narrowly distributed endemic Lilium regale in the Minjiang River valley of China, PLoS One, 2015, vol. 10, no. 3, p. e0118831. https://doi.org/10.1371/journal.pone.0118831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wu, W., Chen, F., Yeh, K., and Chen, J., ISSR analysis of genetic diversity and structure of plum varieties cultivated in Southern China, Biology, 2019. №. 8, p. 2. https://doi.org/10.3390/biology8010002

    Article  CAS  Google Scholar 

  20. Yan, W., Li, J., Zheng, D., Friedman, C., and Wang, H., Analysis of genetic population structure and diversity in Mallotus oblongifolius using ISSR and SRAP markers, Peer J., 2019, vol. 7, p. e7173. https://doi.org/10.7717/peerj.7173

    Article  PubMed  PubMed Central  Google Scholar 

  21. Vaishnav, K., Tiwari, V., Durgapal, A., et al., Estimation of genetic diversity and population genetic structure in Gymnema sylvestre (Retz.) R. Br. ex Schult. populations using DAMD and ISSR markers, J. Genet. Eng. Biotechnol., 2023, vol. 21, no. 42. https://doi.org/10.1186/s43141-023-00497-7

  22. Dalla Rizza, M., Real, D., Reyno, R., et al., Genetic diversity and DNA content of three South American and three Eurasiatic Trifolium species, Genet. Mol. Biol., 2007, vol. 30, no. 4, pp. 1118—1124.

    Article  CAS  Google Scholar 

  23. Abate, T., Tesfaye, K., Fikru, E., and Mihret, F., Application of ISSR-PCR to determine the genetic relationship and genetic diversity among Steudneri clover (Trifolium steudneri) and quartin clover (Trifolium quartinianum) accessions of Ethiopia, Am. J. Biotechnol. Mol. Sci., 2014, vol. 4, no. 1, pp. 1—14. https://doi.org/10.5251/ajbms.2014.4.1.1.14

    Article  Google Scholar 

  24. Nosrati, H., Feizi, M.H., Razban-Haghighi, A., and Seyed-Tarrah, S., Impact of life history on genetic variation in Trifolium (Fabaceae) estimated by ISSR, Environ. Exp. Biol., 2015, no. 13, pp. 83—88.

  25. Lee, Y. and Huh, M.K., Characterization of genetic structure of Trifolium repens, T. pratense, and T. hybridum using inter simple sequence repeats (ISSR) markers, Res. J. Pharm., Biol. Chem. Sci., 2015, vol. 6, no. 2, pp. 1988—1993.

    CAS  Google Scholar 

  26. Abate, T., Inter simple sequence repeat (ISSR) markers for genetic diversity studies in Trifolium species, Adv. Life Sci. Technol., 2017, no. 55, pp. 34—37.

  27. Abate, T. and Tesfaye, K., Genetic diversity study of quartin clover (T. quartinianum) accessions of Ethiopia using ISSR markers, Adv. Life Sci. Technol., 2017, no. 55, pp. 23—33.

  28. Oppmann, E. and Morris, A.B., Assessing the clonal nature of running glade clover (Trifolium calcaricum J.L. Collins and T.F. Wieboldt; Fabaceae), Castanea, 2021, vol. 86, no. 1, pp. 117—124.

    Article  Google Scholar 

  29. Schanzer, I.A., Semenova, M.V., Shelepova, O.V., and Voronkova, T.V., Genetic diversity and natural hybridization in populations of clonal plants of Mentha aquatica L. (Lamiaceae), Wulfenia, 2012, vol. 19, pp. 131—139.

    Google Scholar 

  30. Stepanova, N.Yu., Fedorova, A.V., and Shantser, I.A., On the genetic structure of Eversmannia subspinosa populations in Russia, Turczaninowia, 2023, vol. 26, no. 1, pp. 83—94. http://turczaninowia.asu.ru/article/view/12807.

    Article  Google Scholar 

  31. Buntjer, J.B., Cross Checker v. 2.91, Laboratory of Plant Breeding, Wageningen Agricultural University, Netherlands, 1999.

  32. Hammer, Ø., Harper, D.A.T., and Ryan, P.D., Palaeontological statistics software package for education and data analysis, Palaeontol. Electron., 2001, vol. 4. http://palaeoelectronica.org/2001_1/past/issue1_01.htm.

  33. Peakall, R. and Smouse, P.E., GenAlEx 6: genetic analysis in Excel. Population genetic software for teaching and research, Mol. Ecol. Notes, 2006, vol. 6, pp. 288—295. https://doi.org/10.1111/j.1471-8286.2005.01155.x

    Article  Google Scholar 

  34. Peakall, R. and Smouse, P.E., GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update, Bioinformatics, 2012, no. 28, pp. 2537—2539. https://doi.org/10.1093/bioinformatics/bts460

  35. Pritchard, J.K., Stephens, M., and Donnelly, P., Inference of population structure using multilocus genotype data, Genetics, 2000, vol. 155, pp. 945—959.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Evanno, G., Regnaut, S., and Goudet, J., Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study, Mol. Ecol., 2005, vol. 14, no. 8, pp. 2611—2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x

    Article  CAS  PubMed  Google Scholar 

  37. Earl, D. and von Holdt, B., STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method, Conserv. Genet. Resour., 2012, vol. 4, pp. 359—361. https://doi.org/10.1007/s12686-011-9548-7

    Article  Google Scholar 

  38. Kopelman, N.M., Mayzel, J., Jakobsson, M., et al., Clumpak: a program for identifying clustering modes and packaging population structure inferences across K, Mol. Ecol. Resour., 2015, no. 15, pp. 1179—1191. https://doi.org/10.1111/1755-0998.12387

  39. Wen, J. and Zimmer, E., Phylogeny and biogeography of Panax L. (the ginseng genus, Araliaceae): inferences from ITS sequences of nuclear ribosomal DNA, Mol. Phylogen. Evol., 1996, no. 6, pp. 167—177. https://doi.org/10.1006/mpev.1996.0069

  40. Taberlet, P., Gielly, L., Pautou, G., and Bouvet, J., Universal primers for amplification of three non-coding regions of chloroplast DNA, Plant Mol. Biol., 1991, no. 17, pp. 1105—1109.

  41. Hall, T.A., BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows95/98/NT, Nucl. Acids Symp. Ser., 1999, vol. 41, pp. 95—98. https://doi.org/10.1021/bk-1999-0734.ch008

    Article  CAS  Google Scholar 

  42. Petrauskas, G., Norkevičienė, E., and Baistruk-Hlodan, L., Genetic differentiation of red clover (Trifolium pratense L.) cultivars and their wild relatives, Agriculture, 2023, vol. 13, p. 1008. https://doi.org/10.3390/agriculture13051008

    Article  CAS  Google Scholar 

  43. Nair, R.M., Peck, D.M., Rowe, T.D., et al., Breeding system in Trifolium glanduliferum (Fabaceae), N. Z. J. Agric. Res., 2007, vol. 50, no. 4, pp. 451—456. https://doi.org/10.1080/00288230709510312

    Article  Google Scholar 

  44. Dhar, R., Sharma, N., and Sharma, B., Ovule abortion in relation to breeding system in four Trifolium species, Curr. Sci., 2006, vol. 91, no. 4, pp. 482—485. http://www.jstor.org/stable/24093949.

    Google Scholar 

  45. Pritchard, A.J. and t’Mannetje, L., The breeding systems and some interspecific relations of a number of African Trifolium spp., Euphytica, 1967, vol. 16, pp. 324—329. https://doi.org/10.1007/BF00028938

    Article  Google Scholar 

  46. Morley, F.H.W., The mode of pollination in strawberry clover (Trifolium fragiferum), Aust. J. Exp. Agric., 1963, vol. 3, pp. 5—8. https://doi.org/10.1071/EA9630005

    Article  Google Scholar 

  47. Pasumarty, S.V., Matsumura, T., Higuchi, S., and Yamada, T., Causes of low seed set in white clover (Trifolium repens L.), Grass Forage Sci., 1993, vol. 48, pp. 79—83.

    Article  Google Scholar 

  48. Buyukkartal, H.N.B., Causes of low seed set in the natural tetraploid Trifolium pratense L. (Fabaceae), Afr. J. Biotechnol., 2008, vol. 7, no. 9, pp. 1240—1249.

    Google Scholar 

  49. Dhar, R., Sharma, N., and Sharma, B., Ovule abortion in relation to breeding system in four Trifolium species, Curr. Sci., 2006, vol. 91, no. 4, pp. 482—485. http://www.jstor.org/stable/24093949.

    Google Scholar 

  50. Rao, S. and Stephen, W.P., Bumble bee pollinators in red clover seed production, Crop Sci., 2009, vol. 49, pp. 2207—2214. https://doi.org/10.2135/cropsci2009.01.0003

    Article  Google Scholar 

  51. Palmer-Jones, T., Forster, I.W., and Clinch, P.G., Observations on the pollination of Montgomery red clover (Trifolium pratense L.), N. Z. J. Agric. Res., 1966, vol. 9, no. 3, pp. 738—747. https://doi.org/10.1080/00288233.1966.10431563

    Article  Google Scholar 

  52. Bowers, M.A., Bumble bee colonization, extinction, and reproduction in subalpine meadows in Northeastern Utah, Ecology, 1985, vol. 66, no. 3, pp. 914—927.

    Article  Google Scholar 

  53. Hatfield, R.G. and LeBuhn, G., Patch and landscape factors shape community assemblage of bumble bees, Bombus spp. (Hymenoptera: Apidae), in montane meadows, Biol. Conserv., 2007, vol. 139, pp. 150—158. https://doi.org/10.1016/j.biocon.2007.06.019

    Article  Google Scholar 

  54. Darvill, B., Knight, M.E., and Goulson, D., Use of genetic markers to quantify bumblebee foraging range and nest density, Oikos, 2004, vol. 107, pp. 471—478.

    Article  ADS  Google Scholar 

  55. Elliott, S.E., Subalpine bumble bee foraging distances and densities in relation to flower availability, Environ. Entomol., 2009, vol. 38, no. 3, pp. 748—756.

    Article  PubMed  Google Scholar 

Download references

Funding

This study was performed within the framework of the Tsitsin Main Botanical Garden, Russian Academy of Sciences, the State Assignment no. 122042700002-6 (M.A. Galkina, I.A. Schanzer), and was supported by the Research Program of the Ministry of Science and Higher Education of the Russian Federation, no. 075-15-2021-1396 (O.B. Zelenova, V.G. Onipchenko). The authors also thank the Ministry of Science and Higher Education of the Russian Federation for the support provided to the Main Botanical Garden Joint Facilities Center “Gerbarii GBS RAN”, grant no. 075-15-2021-678, where molecular genetic investigation was conducted.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Schanzer.

Ethics declarations

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

Additional information

Translated by M. Novikova

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zelenova, O.B., Galkina, M.A., Onipchenko, V.G. et al. Genetic Differentiation and Clonality in a Local Population of the Caucasian Endemic Trifolium polyphyllum C.A. Mey. (Fabacae). Russ J Genet 60, 56–65 (2024). https://doi.org/10.1134/S1022795424010137

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795424010137

Keywords:

Navigation