Skip to main content
Log in

The Effect of Different Sources of Unsaturated Fatty Acids on the Expression of IL-1β and TNFα Genes and Blood Factors in Sangesari Lambs Vaccinated against Foot and Mouth Disease

  • ANIMAL GENETICS
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

We studied the effect of palmitic acid sources or n-3 and n-6 polyunsaturated fatty acids (PUFA) in the diet on the pro-inflammatory cytokine expression and the risk of ketosis in lambs received vaccination for foot and mouth disease (FMD) virus. We used 15 Sangsari male lambs with an aged 6 ± 1 month and an average weight of 42 ± 1 kg allocated randomly to three treatments: (1) PalOil group receiving a diet of calcium soap of palm oil fatty acid (FA) to receive palmitic acid (16:0), (2) SunOil group receiving a diet containing calcium soap of sunflower oil FAs to receive linoleic acid (n-6 18:2) and (3) LinOil group receiving a diet containing calcium soap of linseed oil FA to receive α-linolenic acid (n-3 18:3). The lambs received the iso-nitrogenous and iso-caloric diet for 28 days: an adaptation period of 21 days and a sampling period of 7 days. The lambs were separately housed and could drink water. The interleukin-1β (IL-1β) mRNA expression was lower in the LinOil groups than in the PalOil and SunOil groups (P < 0.05). Also, the tumor necrosis factor-α (TNFα) mRNA expression showed an increase in the PalOil group than in the SunOil and LinOil groups, and the lowest expression of TNFα mRNA was found in the LinOil group (P < 0.05). Higher glucose blood level (P < 0.05) was measured in the PalOil group than in lambs on SunOil and LinOil diets. No significant differences were observed between treatments in BHBA and cortisol blood levels (P > 0.05). Feeding an α-linolenic acid diet to lambs after vaccination against FMD improved glucose uptake, decreased the risk of ketosis, and inhibited the expression of pro-inflammatory cytokines (TNFα and IL-1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Park, J.H., Kim, S.J., Oem, J.K., et al., Enhanced immune response with foot and mouth disease virus vp1 and interleukin-1 fusion genes, J. Vet. Sci., 2006, vol. 7, no. 3, pp. 257—262. https://doi.org/10.4142/jvs.2006.7.3.257

    Article  PubMed  PubMed Central  Google Scholar 

  2. Orsel, K., Dekker, A., Bouma, A., et al., Quantification of foot and mouth disease virus excretion and transmission within groups of lambs with and without vaccination, Vaccine, 2007, vol. 25, no. 14, pp. 2673—2679. https://doi.org/10.1016/j.vaccine.2006.11.048

    Article  PubMed  CAS  Google Scholar 

  3. Poorghasemi, M., Seidavi, A.R., and Qotbi, A.A.A., Investigation on fat source effects on broiler chickens performance, Res. J. Biotechnol., vol. 8, no. 1, pp. 78—82.

  4. Slozhenkina, M.I., Gorlov, I.F., Shakhbazova, O.P., et al., Productivity of steers of different genotypes: forecast based on interior indicators, Arq. Bras. Med. Vet. Zootec., 2020, vol. 72, no. 6, pp. 2279—2287. https://doi.org/10.1590/1678-4162-12108

    Article  Google Scholar 

  5. Chinsangaram, J., Piccone, M.E., and Grubman, M.J., Ability of foot-and-mouth disease virus to form plaques in cell culture is associated with suppression of alpha/beta interferon, J. Virol., 1999, vol. 73, no. 12, pp. 9891—9898. https://doi.org/10.1128/JVI.73.12.9891-9898.1999

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Loor, J.J., Bertoni, G., Hosseini, A., et al., Functional welfare–using biochemical and molecular technologies to understand better the welfare state of peripartal dairy cattle, Anim. Prod. Sci., 2013, vol. 53, no. 9, pp. 931—953. https://doi.org/10.1071/AN12344

    Article  CAS  Google Scholar 

  7. Hossein Abadi, M., Ghoorchi, T., Amirteymouri, E., et al., The effect of different processing methods of linseed on growth performance, nutrient digestibility, blood parameters and ruminate behavior of lambs, Vet. Med. Sci., 2023, vol. 2023, pp. 1—10. https://doi.org/10.1002/vms3.1149

    Article  CAS  Google Scholar 

  8. Bertoni, G., Minuti, A., and Trevisi, E., Immune system, inflammation and nutrition in dairy cattle, Anim. Prod. Sci., 2015, vol. 55, no. 7, pp. 943—948. https://doi.org/10.1071/AN14863

    Article  CAS  Google Scholar 

  9. Lee, I.K., Kye, Y.C., Kim, G., et al., Stress, nutrition, and intestinal immune responses in pigs—a review, Asian-Australas. J. Anim. Sci., 2016, vol. 29, no. 8, p. 1075. https://doi.org/10.5713/ajas.16.0118

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Schwager, J., Richard, N., Riegger, C., et al., ω-3 PUFAS and resveratrol differently modulate acute and chronic inflammatory processes, BioMed Res. Int., 2015, vol. 2015, pp. 1—11. https://doi.org/10.1155/2015/535189

    Article  CAS  Google Scholar 

  11. Bhathena, S.J., Relationship between fatty acids and the endocrine and neuroendocrine system, Nutr. Neurosci., 2006, vol. 9, pp. 1—10. https://doi.org/10.1080/10284150600627128

    Article  PubMed  CAS  Google Scholar 

  12. Lakdawala, N. and Grant-Kels, J.M., Acrodermatitis enteropathica and other nutritional diseases of the folds (intertriginous areas), Clin. Dermatol., 2015, vol. 33, no. 4, pp. 414—419. https://doi.org/10.1016/j.clindermatol.2015.04.002

    Article  PubMed  Google Scholar 

  13. Darwesh, A.M., Sosnowski, D.K., Lee, T.Y., et al., Insights into the cardioprotective properties of n-3 P-UFAS against ischemic heart disease via modulation of the innate immune system, Chem. Biol. Interact., 2019, vol. 308, pp. 20—44. https://doi.org/10.1016/j.cbi.2019.04.037

    Article  PubMed  CAS  Google Scholar 

  14. Gulliver, C.E., Friend, M.A., King, B.J., et al., The role of omega-3 polyunsaturated fatty acids in reproduction of sheep and cattle, Anim. Reprod. Sci., 2012, vol. 131, pp. 9—22. https://doi.org/10.1016/j.anireprosci.2012.02.002

    Article  PubMed  CAS  Google Scholar 

  15. Smeed, J.A., Watkins, C.A., Rhind, S.M., et al., Differential cytokine gene expression profiles in the three pathological forms of sheep paratuberculosis, BMC Vet. Res., 2007, vol. 3, pp. 1—11. https://doi.org/10.1186/1746-6148-3-18

    Article  CAS  Google Scholar 

  16. SAS®/STAT Software, Release 9.1, Cary, NC: SAS Institute, 2003.

  17. Cheung, C., Poon, L., Lau, A., et al., Induction of proinflammatory cytokines in human macrophages by influenza A (H5N1) viruses: a mechanism for the unusual severity of human disease, Lancet., 2002, vol. 360, pp. 1831—1837. https://doi.org/10.1016/S0140-6736(02)11772-7

    Article  PubMed  CAS  Google Scholar 

  18. Kumagai, Y., Takeuchi, O., Kato, H., et al., Alveolar macrophages are the primary interferon-α producer in pulmonary infection with RNA viruses, Immunity, 2007, vol. 27, pp. 240—252. https://doi.org/10.1016/j.immuni.2007.07.013

    Article  PubMed  CAS  Google Scholar 

  19. Calder, P.C., N−3 polyunsaturated fatty acids and inflammation: from molecular biology to the clinic, Lipids, 2003, vol. 38, pp. 343—352. https://doi.org/10.1007/s11745-003-1068-y

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Zahedi, A., Jamshidi, K., and Poorghasemi, M., Evaluation of bursal index and bursal lesion scores in broiler flocks, J. Hell. Vet. Med. Soc., 2023, vol. 74, no. 2, pp. 5609—5614.

    Google Scholar 

  21. Zeng, Y.Y., Jiang, W.D., Liu, Y., et al., Dietary alpha-linolenic acid/linoleic acid ratios modulate intestinal immunity, tight junctions, anti-oxidant status and mRNA levels of NF-κB p65, MLCK and Nrf2 in juvenile grass carp (Ctenopharyngodon idella), Fish Shellfish Immunol., 2016, vol. 51, pp. 351—364. https://doi.org/10.1016/j.fsi.2015.11.026

    Article  PubMed  CAS  Google Scholar 

  22. Shi, L., Xu, Y., Mao, C., et al., Effects of heat stress on antioxidant status and immune function and expression of related genes in lambs, Int. J. Biometeorol., 2020, vol. 64, pp. 2093—2104. https://doi.org/10.1007/s00484-020-02000-0

    Article  PubMed  Google Scholar 

  23. Matsuyama, W., Mitsuyama, H., Watanabe, M., et al., Effects of omega-3 polyunsaturated fatty acids on inflammatory markers in COPD, Chest., 2005, vol. 128, no. 6, pp. 3817—3827. https://doi.org/10.1378/chest.128.6.3817

    Article  PubMed  CAS  Google Scholar 

  24. Tilbrook, A.J., Turner, A.I., and Clarke, I.J., Effects of stress on reproduction in non-rodent mammals: the role of glucocorticoids and sex differences, Rev. Reprod., 2000, vol. 5, no. 2, pp. 105—113. https://doi.org/10.1530/ror.0.0050105

    Article  PubMed  CAS  Google Scholar 

  25. Inbaraj, S., Sejian, V., and Bagath, M., Impact of heat stress on immune responses of livestock: a review, J. Trop. Agric. Sci., 2016, vol. 39, pp. 459—482. https://doi.org/10.1007/s11250-021-02796-y

    Article  Google Scholar 

  26. Li, P., Mai, K., Trushenski, J., et al., New developments in fish amino acid nutrition: towards functional and environmentally oriented aquafeeds, Amino Acids., 2009, vol. 37, pp. 43—53. https://doi.org/10.1007/s00726-008-0171-1

    Article  PubMed  CAS  Google Scholar 

  27. Carbajal, A., Tallo-Parra, O., Monclús, L., et al., Variation in scale cortisol concentrations of a wild freshwater fish: habitat quality or seasonal influences, Gen. Compar. Endocrinol., 2019, vol. 275, pp. 44—50. https://doi.org/10.1016/j.ygcen.2019.01.015

    Article  CAS  Google Scholar 

  28. Kaveh, M., Eftekhar, N., and Boskabady, M.H., The effect of alpha linolenic acid on tracheal responsiveness, lung inflammation, and immune markers in sensitized rats, Iran. J. Basic Med. Sci., 2019, vol. 22, no. 3, pp. 255—261. https://doi.org/10.22038/ijbms.2019.27381.6684

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ciliberti, M.G., Albenzio, M., Inghese, C., et al., Peripheral blood mononuclear cell proliferation and cytokine production in sheep as affected by cortisol level and duration of stress, J. Dairy Sci., 2017, vol. 100, no. 12, pp. 750—756. https://doi.org/10.3168/jds.2016-11688

    Article  PubMed  CAS  Google Scholar 

  30. Barkakati, J., Sarma, S., and Kalita, D., Effect of foot and mouth disease on haematological and biochemical profile of cattle, Indian J. Anim. Res., 2015, vol. 49, no. 5, pp. 713—716. https://doi.org/10.18805/ijar.5588

    Article  Google Scholar 

  31. Ghanem, M.M. and Abdel-Hamid, O.M., Clinical, haematological and biochemical alterations in heat intolerance (panting) syndrome in egyptian cattle following natural foot-and-mouth disease (FMD), Trop. Anim. Health Prod., 2010, vol. 42, pp. 1167—1173. https://doi.org/10.1007/s11250-010-9543-0

    Article  PubMed  Google Scholar 

  32. Poorghasemi, M., Chamani, M., Mirhosseini, S.Z., et al., Effect of probiotic and different sources of fat on performance, carcass characteristics, intestinal morphology and ghrelin gene expression on broiler chickens, Kafkas Univ. Vet. Fak. Derg., 2017, vol. 24, no. 2, pp. 169—178.https://doi.org/10.9775/kvfd.2017.18433.

  33. Sutmoller, P., Barteling, S.S., Olascoaga, R.C., et al., Control and eradication of foot-and-mouth disease, Virus Res., 2003, vol. 91, no. 1, pp. 101—144. https://doi.org/10.1016/S0168-1702(02)00262-9

    Article  PubMed  CAS  Google Scholar 

  34. Anil, G. and Gurudutt, J., Metabolic profile of foot and mouth disease stressed sheep in semi arid region, J. Stress Physiol. Biochem., 2011, vol. 7, no. 2, pp. 25—34. https://doi.org/10.1016/j.ab.2019.05.014

    Article  CAS  Google Scholar 

  35. Wei, D., Li, J., Shen, M., et al., Cellular production of n-3 PUFAS and reduction of n-6–to–n-3 ratios in the pancreatic β-cells and islets enhance insulin secretion and confer protection against cytokine-induced cell death, Diabetes, 2010, vol. 59, no. 2, pp. 471—478. https://doi.org/10.2337/db09-0284

    Article  PubMed  CAS  Google Scholar 

  36. Itoh, Y., Kawamata, Y., Harada, M., et al., Free fatty acids regulate insulin secretion from pancreatic β cells through GPR40, Nature, 2003, vol. 422, no. 4, pp. 173—176. https://doi.org/10.1038/nature01478

    Article  PubMed  CAS  Google Scholar 

  37. Bhaswant, M., Poudyal, H., and Brown, L., Mechanisms of enhanced insulin secretion and sensitivity with n-3 unsaturated fatty acids, J. Nutr. Biochem., 2015, vol. 26, no. 6, pp. 571—584. https://doi.org/10.1016/j.jnutbio.2015.02.001

    Article  PubMed  CAS  Google Scholar 

  38. Al-Hasani, H. and Joost, H.G., Nutrition-/diet-induced changes in gene expression in white adipose tissue, Best Pract. Res. Clin. Endocrinol. Metabol., 2005, vol. 19, no. 4, pp. 589—603. https://doi.org/10.1016/j.beem.2005.07.005

    Article  CAS  Google Scholar 

  39. Poorghasemi, M., Seidavi, A.R., Qotbi, A.A.A., et al., Effect of dietary fat source on humoral immunity response of broiler chickens, Eur. Poult. Sci., 2015, vol. 79, pp. 1—8. https://doi.org/10.1399/eps.2015.92

    Article  Google Scholar 

  40. Czerkawski, J., Blaxter, K., and Wainman, F., The metabolism of oleic, linoleic and linolenic acids by sheep with reference to their effects on methane production, Br. J. Nutr., 1966, vol. 20, pp. 349—362. https://doi.org/10.1079/BJN19660035

    Article  PubMed  CAS  Google Scholar 

  41. Nath, R., Prasad, R., and Sarma, S., Oxidative stress biomarkers in cross bred cows affected with foot and mouth disease, Indian J. Anim. Res., 2014, vol. 48, no. 6, https://doi.org/10.5958/0976-0555.2014.00045.4

  42. Osorio, J., Trevisi, E., Ji, P., et al., Biomarkers of inflammation, metabolism, and oxidative stress in blood, liver, and milk reveal a better immunometabolic status in peripartal cows supplemented with Smartamine M or Metasmart, J. Dairy Sci., 2014, vol. 97, no. 12, pp. 7437—7450. https://doi.org/10.3168/jds.2013-7679

    Article  PubMed  CAS  Google Scholar 

  43. Spurlock, M., Regulation of metabolism and growth during immune challenge: an overview of cytokine function, J. Anim. Sci., 1997, vol. 75, no. 7, pp. 1773—1783. https://doi.org/10.2527/1997.7571773x

    Article  PubMed  CAS  Google Scholar 

  44. Seo, J., Song, M., Jo, N., et al., The co-injection of antioxidants with foot-and-mouth disease vaccination altered growth performance and blood parameters of finishing Holstein steers, Asian-Australas. J. Anim. Sci., 2019, vol. 32, no. 6, p. 792. https://doi.org/10.5713/ajas.18.0609

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are thankful to the personnel of the commercial farm for their kind assistance during sampling and animal experiments.

Funding

This research was done with the personal funding of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Sadeghi.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghorbani, A., Sadeghi, A.A., Shawrang, P. et al. The Effect of Different Sources of Unsaturated Fatty Acids on the Expression of IL-1β and TNFα Genes and Blood Factors in Sangesari Lambs Vaccinated against Foot and Mouth Disease. Russ J Genet 59 (Suppl 2), S145–S153 (2023). https://doi.org/10.1134/S1022795423140041

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795423140041

Keywords:

Navigation