Skip to main content
Log in

Effect of Chronic Radiation Exposure on Human MicroRNA Expression

  • HUMAN GENETICS
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

An estimate of relative expression of mature microRNAs assessed in peripheral blood cells in persons chronically exposed to low-dose radiation in the long-term period was performed. The study included people exposed in the 1950s on the Techa River (Southern Urals, Russia). The cumulative red bone marrow doses (RBM) of the persons in the main study group (33 persons) ranged from 77.7 to 2869.8 mGy (mean value of 698.5 mGy). The comparison group consisted of 30 people with RBM dose not exceeding 70 mGy over their lifetime. Reverse transcription of RNA samples was performed using specific stem-loop primers (“stem-loop”). Changes in the relative content of microRNAs were assessed by real-time PCR on the CFX96 detection system (BioRad, United States). Statistical analysis of the results was performed using the Mann–Whitney U criterion. A significant increase in hsa-miR-125b, hsa-miR-181a, and hsa-miR-16-5p content was detected in exposed people after 60 years, and their expression was found to depend on the RBM dose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

REFERENCES

  1. Friedman, R.C., Farh, K.K., Burge, C.B., et al., Most mammalian mRNAs are conserved targets of microRNAs, Genome Res., 2009, vol. 19, no. 1, pp. 92—105. https://doi.org/10.1101/gr.082701.108

    Article  CAS  PubMed  Google Scholar 

  2. Mao, A., Liu, Y., Zhang, H., et al., MicroRNA expression and biogenesis in cellular response to ionizing radiation, DNA Cell Biol., 2014, vol. 33, no. 10, pp. 667—679. https://doi.org/10.1089/dna.2014.2401

    Article  CAS  PubMed  Google Scholar 

  3. Pashaei, E., Pashaei, E., Ahmady, M., et al., Meta-analysis of miRNA expression profiles for prostate cancer recurrence following radical prostatectomy, PLoS One, 2017, vol. 12, no. 6, р. e00179543. https://doi.org/10.1371/journal.pone.0179543

    Article  CAS  Google Scholar 

  4. Adhami, M., Haghdoost, A.A., Sadeghi, B., et al., Candidate miRNAs in human breast cancer biomarkers: a systematic review, Breast Cancer, 2018, vol. 25, no. 2, pp. 198—205. https://doi.org/10.1007/s12282-017-0814-803

    Article  PubMed  Google Scholar 

  5. Pardini, B., De Maria, D., Francavilla, A., et al., MicroRNAs as markers of progression in cervical cancer: a systematic review, BMC Cancer, 2018, vol. 18, no. 1, p. 696. https://doi.org/10.1186/s12885-018-4590-4

    Article  CAS  PubMed  Google Scholar 

  6. Shao, C., Yang, F., Qin, Z., et al., The value of miR-155 as a biomarker for the diagnosis and prognosis of lung cancer: a systematic review with meta-analysis, BMC Cancer, 2019, vol. 19, no. 1, p. 1103. https://doi.org/10.1186/s12885-019-6297-6

    Article  CAS  PubMed  Google Scholar 

  7. Romakina, V.V., Zhirov, I.V., Nasonova, S.N., Zaseeva, A.V., Kochetov, A.G., Liang, O.V., and Tereshchenko, S.N., MicroRNAs as biomarkers of cardiovascular diseases, Kardiologiia, 2018, vol. 58, no. 1, pp. 66—71. https://doi.org/10.18087/cardio.2018.1.10083

    Article  Google Scholar 

  8. Otsuka, M., Kishikawa, T., Yoshikawa, T., et al., MicroRNAs and liver disease, J. Hum. Genet., 2016, vol. 62, pp. 75—80. https://doi.org/10.1038/jhg.2016.53

    Article  CAS  PubMed  Google Scholar 

  9. Zhang, Y., Jia, Y., Zheng, R., et al., Plasma microRNA-122 as a biomarker for viral-, alcohol-, and chemical-related hepatic diseases, Clin. Chem., 2010, vol. 56, no. 12, pp. 1830—1838. https://doi.org/10.1373/clinchem.2010.147850

    Article  CAS  PubMed  Google Scholar 

  10. Metheetrairut, C. and Slack, F.J., MicroRNAs in the ionizing radiation response and in radiotherapy, Curr. Opin. Genet. Dev., 2013, vol. 23, no. 1, pp. 2—19. https://doi.org/10.1016/j.gde.2013.01.002

    Article  CAS  Google Scholar 

  11. Jacob, N.K., Cooley, J.V., Yee, T.N., et al., Identification of sensitive serum microRNA biomarkers for radiation biodosimetry, PLoS One, 2013, vol. 8, no. 2, р. 57603. https://doi.org/10.1371/journal.pone.0057603

    Article  CAS  Google Scholar 

  12. Chaudhry, M.A., Omaruddin, R.A., Kreger, B., et al., MicroRNA responses to chronic or acute exposures to low dose ionizing radiation, Mol. Biol. Rep., 2012, vol. 39, no. 7, pp. 7549—7558. https://doi.org/10.1007/s11033-012-1589-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Simone, N.L., Soule, B.P., Ly, D., et al., Ionizing radiation-induced oxidative stress alters miRNA expression, PLoS One, 2009, vol. 4, р. 6377. https://doi.org/10.1371/journal.pone.0006377

    Article  CAS  Google Scholar 

  14. Shin, S., Cha, H.J., Lee, E.M., et al., Alteration of miRNA profiles by ionizing radiation in A549 human non-small cell lung cancer cells, Int. J. Oncol., 2009, vol. 35, no. 1, pp. 81—86.

    CAS  PubMed  Google Scholar 

  15. Chaudhry, M.A., Real-time PCR analysis of microRNA expression in ionizing radiation-treated cells, Cancer Biother. Radiopharm., 2009, vol. 24, no. 1, pp. 49—56. https://doi.org/10.1089/cbr.2008.0513

    Article  CAS  PubMed  Google Scholar 

  16. Song, M., Xie, D., Gao, S., et al., A biomarker panel of radiation-upregulated miRNA as signature for ionizing radiation exposure, Life (Basel), 2020, vol. 10, no. 12, р. 361. https://doi.org/10.3390/life10120361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Templin, T., Paul, S., Amundson, S.A., et al., Radiation-induced microRNA expression changes in peripheral blood cells of radiotherapy patients, Int. J. Radiat. Oncol., Biol., Phys., 2011, vol. 80, no. 2, р. 54957. https://doi.org/10.1016/j.ijrobp.2010.12.061

    Article  CAS  Google Scholar 

  18. Weidhaas, I., Babar, S.M., Nallur, P., et al., MicroRNAs as potential agents to alter resistance to cytotoxic anticancer therapy, Cancer Res., 2007, vol. 67, no. 23, pp. 11111—11116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Maes, O.C., An, J., Sarojini, H., et al., Changes in microRNA expression patterns in human fibroblasts after low-LET radiation, J. Cell. Biochem., 2008, vol. 105, no. 3, pp. 824—834. https://doi.org/10.1002/jcb.21878

    Article  CAS  PubMed  Google Scholar 

  20. Templin, T., Paul, S., Amundson, S.A., et al., Radiation-induced micro-RNA expression changes in peripheral blood cells of radiotherapy patients, Int. J. Radiat. Oncol., Biol., Phys., 2011, vol. 80, no. 2, pp. 549—557. https://doi.org/10.1016/j.ijrobp.2010.12.061

    Article  CAS  PubMed  Google Scholar 

  21. Lacombe, J., Sima, C., Amundson, S.A., and Zenhausern, F., Candidate gene biodosimetry markers of exposure to external ionizing radiation in human blood: a systematic review, PLoS One, 2018, vol. 13, no. 6, р. e0198851. https://doi.org/10.1371/journal.pone.0198851

    Article  CAS  PubMed  Google Scholar 

  22. Jacob, N.K., Cooley, J.V., Yee, T.N., et al., Identification of sensitive serum microRNA biomarkers for radiation biodosimetry, PLoS One, 2013, vol. 8, no. 2, р. e57603. https://doi.org/10.1371/journal.pone.0057603

    Article  CAS  PubMed  Google Scholar 

  23. Chen, G., Zhu, W., Shi, D., et al., MicroRNA-181a sensitizes human malignant glioma U87MG cells to radiation by targeting Bcl-2, Oncol. Rep., 2010, vol. 23, no. 4, pp. 997—1003. https://doi.org/10.3892/or_00000725

    Article  CAS  PubMed  Google Scholar 

  24. Beer, L., Seemann, R., Ristl, R., et al., High dose ionizing radiation regulates microRNA and gene expression changes in human peripheral blood mononuclear cells, BMC Genomics, 2014, vol. 15, р. 814. https://doi.org/10.1186/1471-2164-15-814

    Article  CAS  PubMed  Google Scholar 

  25. Sun, Y., Hawkins, P.G., Bi, N., et al., Serum microRNA signature predicts response to high-dose radiation therapy in locally advanced non-small cell lung cancer, Int. J. Radiat. Oncol., Biol., Phys., 2018, vol. 100, no. 1, pp. 107—114. https://doi.org/10.1016/j.ijrobp.2017.08.039

    Article  CAS  PubMed  Google Scholar 

  26. Silkin, S.S., Krestinina, L.Yu., Startsev, V.N., and Akleev, A.V., Ural cohort of emergency-irradiated population, Med. Ekstremal’nykh Situat., 2019, vol. 21, no. 3, pp. 393—402.

    Google Scholar 

  27. Degteva, M.O., Napier, B.A., Tolstykh, E.I., et al., Enhancements in the Techa River dosimetry system: TRDS-2016D code for reconstruction of deterministic estimates of dose from environmental exposures, Health Phys., 2019, vol. 117, no. 4, pp. 378—387. https://doi.org/10.1097/HP.0000000000001067

    Article  CAS  PubMed  Google Scholar 

  28. Livak, K.J. and Schmittgen, T.D., Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)), Methods, 2001, vol. 25, no. 4, pp. 402—408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  29. Riolo, G., Cantara, S., Marzocchi, C., and Ricci, C., miRNA targets: from prediction tools to experimental validation, Methods Protoc., 2020, vol. 4, no. 1. https://doi.org/10.3390/mps4010001

  30. Stroynowska-Czerwinska, A., Fiszer, A., and Krzyzosiak, W.J., The panorama of miRNA-mediated mechanisms in mammalian cells, Cell. Mol. Life Sci., 2014, vol. 71, no. 12, pp. 2253—2270. https://doi.org/10.1007/s00018-013-1551-6

    Article  CAS  PubMed  Google Scholar 

  31. Aqeilan, R.I., Calin, G.A., and Croce, C.M., miR-15a and miR-16-1 in cancer: discovery, function and future perspectives, Cell Death Differ., 2010, vol. 17, no. 2, pp. 215—220. https://doi.org/10.1038/cdd.2009.69

    Article  CAS  PubMed  Google Scholar 

  32. Chen, G., Zhu, W., Shi, D., et al., MicroRNA-181a sensitizes human malignant glioma U87MG cells to radiation by targeting Bcl-2, Oncol. Rep., 2010, vol. 23, no. 4, pp. 997—1003. https://doi.org/10.3892/or_00000725

    Article  CAS  PubMed  Google Scholar 

  33. Makhotkin, M.A., Chebotarev, D.A., Tyutyakina, M.G., et al., The role of microRNAs in the development of radioresistance of prostate cancer cells (experimental study), Onkourologiia, 2021, vol. 17, no. 4, pp. 85—93. https://doi.org/10.17650/1726-9776-2021-17-4-85-93

    Article  Google Scholar 

  34. Shulenina, L.V., Mikhailov, V.F., Vasilyeva, I.M., et al., Genes- and noncoding RNA-expression profiles in tissue bioptats and blood cells of patients with different pathology after radiation exposure, Vestn. Voronezh. Gos. Univ., Ser. Khim. Biol. Farm., 2019, no. 1, pp. 103—109.

  35. Yang, D., Zhan, M., Chen, T., et al., miR-125b-5p enhances chemotherapy sensitivity to cisplatin by down-regulating Bcl2 in gallbladder cancer, Sci. Rep., 2017, vol. 7, р. 43109. https://doi.org/10.1038/srep43109

    Article  PubMed  PubMed Central  Google Scholar 

  36. Nikiforov, V.S., Blinova, E.A., and Akleyev, A.V., Transcriptional activity of cell cycle and apoptosis genes in chronically irradiated individuals with an increased frequency of TCR-mutant lymphocytes, Radiats. Risk, 2020, vol. 29, no. 2, pp. 89—100.

    Google Scholar 

Download references

Funding

This work was financed within the framework of the federal target program “Ensuring Nuclear and Radiation Safety for 2016–2020 and for the Period up to 2030.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Yanishevskaya.

Ethics declarations

Conflict of interest. The authors declare that they have no conflict of interest.

Statement of compliance with standards of research involving humans as subjects. All procedures performed in research with human participants comply with the ethical standards of the institutional and/or national committee on research ethics and the 1964 Declaration of Helsinki and its subsequent amendments or comparable ethical standards.

Informed consent was obtained from each of the participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yanishevskaya, M.A., Blinova, E.A. & Akleyev, A.V. Effect of Chronic Radiation Exposure on Human MicroRNA Expression. Russ J Genet 59, 1050–1057 (2023). https://doi.org/10.1134/S1022795423100150

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795423100150

Keywords:

Navigation