Skip to main content

Advertisement

Log in

The Cellular and Epigenetic Aspects of Trained Immunity and Prospects for Creation of Universal Vaccines on the Eve of More Frequent Pandemics

  • REVIEWS AND THEORETICAL ARTICLES
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The inevitability of pandemics outbreaks creates an urgent requirement for emergency action to develop effective technologies to reduce harm to the human population in the period between the onset of an epidemic and the development and production of a vaccine. In this review we discuss the possibility of engineering universal vaccines. Such vaccines exploiting the nonspecific antipathogenic potential of innate immunity, could allow the population to be vaccinated when an unidentified pathogen appears and should reduce disease severity until pathogen-specific vaccines become available. There is strong evidence that bacterial or viral vaccines such as tuberculosis vaccine (BCG), measles and polio provide heterologous protective effects against unrelated pathogens. This is due to the innate immune system’s ability to maintain the memory of past infections and use it to develop immune defenses against new ones. This effect has been called “trained” immunity. The use of trained immunity may also represent an important new approach to improving existing vaccines or to developing new vaccines that combine the induction of classical adaptive immune memory and innate immune memory. Such approaches can be boosted by genetic technologies and could prove extremely useful against future pandemics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. Garcia, D., Redirect military budgets to tackle climate change and pandemics, Nature, 2020, vol. 584, no. 7822, pp. 521—523. https://doi.org/10.1038/d41586-020-02460-9

    Article  CAS  PubMed  Google Scholar 

  2. Steffen, W., Richardson, K., Rockstrom, J., et al., Sustainability: planetary boundaries: guiding human development on a changing planet, Science, 2015, vol. 347, no. 6223. https://doi.org/10.1126/science.1259855

  3. Vora, N.M., Hannah, L., Lieberman, S., et al., Want to prevent pandemics? Stop spillovers, Nature, 2022, vol. 605, no. 7910, pp. 419—422. https://doi.org/10.1038/d41586-022-01312-y

    Article  CAS  PubMed  Google Scholar 

  4. Lennan, M. and Morgera, E., The Glasgow Climate Conference (COP26), Int. J. Mar. Coastal Law, 2022, vol. 37, no. 1, pp. 137—151. https://doi.org/10.1163/15718085-bja10083

    Article  Google Scholar 

  5. Schiermeier, Q., The US has left the Paris climate deal—what’s next? Nature, 2020. https://doi.org/10.1038/d41586-020-03066-x

  6. Rounce, D.R., Hock, R., Maussion, F., et al., Global glacier change in the 21st century: every increase in temperature matters, Science, 2023, vol. 379, no. 6627, pp. 78—83. https://doi.org/10.1126/science.abo1324

    Article  CAS  PubMed  Google Scholar 

  7. Phelan, A.L. and Carlson, C.J., A treaty to break the pandemic cycle, Science, 2022, vol. 377, no. 6605, pp. 475—477. https://doi.org/10.1126/science.abq5917

    Article  CAS  PubMed  Google Scholar 

  8. A Pandemic Era, Lancet Planet Health, 2021, vol. 5, no. 1. p. e1. https://doi.org/10.1016/s2542-5196(20)30305-3

  9. Fisher, D., Suri, S., Carson, G., et al., What comes next in the COVID-19 pandemic?, Lancet, 2022, vol. 399, no. 10336, pp. 1691—1692. https://doi.org/10.1016/S0140-6736(22)00580-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Baker, R.E., Mahmud, A.S., Miller, I.F., et al., Infectious disease in an era of global change, Nat. Rev. Microbiol., 2022, vol. 20, no. 4, pp. 193—205. https://doi.org/10.1038/s41579-021-00639-z

    Article  CAS  PubMed  Google Scholar 

  11. Mulder, W.J.M., Ochando, J., Joosten, L.A.B., et al., Therapeutic targeting of trained immunity, Nat. Rev. Drug Discovary, 2019, vol. 18, no. 7, pp. 553—566. https://doi.org/10.1038/s41573-019-0025-4

    Article  CAS  Google Scholar 

  12. Old, L.J., Clarke, D.A., and Benacerraf, B., Effect of bacillus Calmette—Guerin infection on transplanted tumours in the mouse, Nature, 1959, vol. 184, suppl. 5, pp. 291—292. https://doi.org/10.1038/184291a0

    Article  Google Scholar 

  13. Gong, W., An, H., Wang, J., et al., The natural effect of BCG vaccination on COVID-19: the debate continues, Front. Immunol., 2022, vol. 13. https://doi.org/10.3389/fimmu.2022.953228

  14. Gonzalez-Perez, M., Sanchez-Tarjuelo, R., Shor, B., et al., The BCG vaccine for COVID-19: first verdict and future directions, Front. Immunol., 2021, vol. 12. https://doi.org/10.3389/fimmu.2021.632478

  15. Carlson, C.J. and Phelan, A.L., A choice between two futures for pandemic recovery, Lancet Planet Health, 2020, vol. 4, no. 12, pp. e545—e546. https://doi.org/10.1016/S2542-5196(20)30245-X

    Article  PubMed  PubMed Central  Google Scholar 

  16. Hernandez, J., Meisner, J., Bardosh, K., and Rabinowitz, P., Prevent pandemics and halt climate change? Strengthen land rights for indigenous peoples, Lancet Planet Health, 2022, vol. 6, no. 5, pp. e381—e382. https://doi.org/10.1016/S2542-5196(22)00069-9

    Article  PubMed  Google Scholar 

  17. Jones, M., Mills, D., and Gray, R., Expecting the unexpected? Improving rural health in the era of bushfires, novel coronavirus and climate change, Aust. J. Rural Health, 2020, vol. 28, no. 2, pp. 107—109. https://doi.org/10.1111/ajr.12623

    Article  PubMed  Google Scholar 

  18. The Lancet Global collaboration for health: rhetoric versus reality, Lancet, 2020, vol. 396, no. 10253, p. 735. https://doi.org/10.1016/S0140-6736(20)31900-0

  19. Murdoch, D.R., Crengle, S., Frame, B., et al., We have been warned–preparing now to prevent the next pandemic, N. Z. Med. J., 2021, vol. 134, no. 1536, pp. 8—11.

    PubMed  Google Scholar 

  20. Selin, N.E., Lessons from a pandemic for systems-oriented sustainability research, Sci. Adv., 2021, vol. 7, no. 22. https://doi.org/10.1126/sciadv.abd8988

  21. Folke, C., Polasky, S., Rockstrom, J., et al., Our future in the Anthropocene biosphere, Ambio, 2021, vol. 50, no. 4, pp. 834—869. https://doi.org/10.1007/s13280-021-01544-8

    Article  PubMed  PubMed Central  Google Scholar 

  22. Cousins, T., Pentecost, M., Alvergne, A., et al., The changing climates of global health, BMJ Global Health, 2021, vol. 6, no. 3. https://doi.org/10.1136/bmjgh-2021-005442

  23. Sleepwalking into the next pandemic, Nat. Med., 2022, vol. 28, no. 7, p. 1325. https://doi.org/10.1038/s41591-022-01918-9

  24. Meyer, C.U. and Zepp, F., Principles in immunology for the design and development of vaccines, Methods Mol. Biol., 2022, vol. 2410, pp. 27—56. https://doi.org/10.1007/978-1-0716-1884-4_2

    Article  PubMed  Google Scholar 

  25. Arico, E., Bracci, L., Castiello, L., et al., Exploiting natural antiviral immunity for the control of pandemics: lessons from Covid-19, Cytokine Growth Factor Rev., 2022, vol. 63, pp. 23—33. https://doi.org/10.1016/j.cytogfr.2021.12.001

    Article  CAS  PubMed  Google Scholar 

  26. Yan, N. and Chen, Z.J., Intrinsic antiviral immunity, Nat. Immunol., 2012, vol. 13, no. 3, pp. 214—222. https://doi.org/10.1038/ni.2229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Netea, M.G., Dominguez-Andres, J., Barreiro, L.B., et al., Defining trained immunity and its role in health and disease, Nat. Rev. Immunol., 2020, vol. 20, no. 6, pp. 375—388. https://doi.org/10.1038/s41577-020-0285-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Netea, M.G., Giamarellos-Bourboulis, E.J., Dominguez-Andres, J., et al., Trained immunity: a tool for reducing susceptibility to and the severity of SARS-CoV-2 infection, Cell, 2020, vol. 181, no. 5, pp. 969—977. https://doi.org/10.1016/j.cell.2020.04.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Paul, S., Hmar, E.B., and Sharma, H.K., Strengthening immunity with immunostimulants: a review, Curr. Trends Pharm. Res., 2020, vol. 7, no. 1.

  30. Anaeigoudari, A., Mollaei, H.R., Arababadi, M.K., and Nosratabadi, R., Severe acute respiratory syndrome coronavirus 2: the role of the main components of the innate immune system, Inflammation, 2021, vol. 44, no. 6, pp. 2151—2169. https://doi.org/10.1007/s10753-021-01519-7

    Article  CAS  PubMed  Google Scholar 

  31. Fraschilla, I., Amatullah, H., and Jeffrey, K.L., One genome, many cell states: epigenetic control of innate immunity, Curr. Opin. Immunol., 2022, vol. 75. https://doi.org/10.1016/j.coi.2022.102173

  32. Ong, G.H., Lian, B.S.X., Kawasaki, T., and Kawai, T., Exploration of pattern recognition receptor agonists as candidate adjuvants, Front. Cell. Infect. Microbiol., 2021, vol. 11. https://doi.org/10.3389/fcimb.2021.745016

  33. Labarrere, C.A. and Kassab, G.S., Pattern recognition proteins: first line of defense against coronaviruses, Front. Immunol., 2021, vol. 12. https://doi.org/10.3389/fimmu.2021.652252

  34. Marshall, J.S., Warrington, R., Watson, W., and Kim, H.L., An introduction to immunology and immunopathology, Allergy Asthma Clin. Immunol., 2018, vol. 14, suppl. 2, p. 49. https://doi.org/10.1186/s13223-018-0278-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chen, L., Deng, H., Cui, H., et al., Inflammatory responses and inflammation-associated diseases in organs, Oncotarget, 2018, vol. 9, no. 6, pp. 7204—7218. https://doi.org/10.18632/oncotarget.23208

    Article  PubMed  Google Scholar 

  36. Jentho, E. and Weis, S., DAMPs and innate immune training, Front. Immunol., 2021, vol. 12. https://doi.org/10.3389/fimmu.2021.699563

  37. Zhang, J.M. and An, J., Cytokines, inflammation, and pain, Int. Anesthesiol. Clin., 2007, vol. 45, no. 2, pp. 27—37. https://doi.org/10.1097/AIA.0b013e318034194e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lazzaro, B.P. and Tate, A.V., Balancing sensitivity, risk, and immunopathology in immune regulation, Curr. Opin. Insect. Sci., 2022, vol. 50. https://doi.org/10.1016/j.cois.2022.100874

  39. McDaniel, M.M., Meibers, H.E., and Pasare, C., Innate control of adaptive immunity and adaptive instruction of innate immunity: bi-directional flow of information, Curr. Opin. Immunol., 2021, vol. 73, pp. 25—33. https://doi.org/10.1016/j.coi.2021.07.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Vincenzo, B., Asif, I.J., Nikolaos, P., and Francesco, M., Adaptive immunity and inflammation, Int. J. Inflam., 2015, vol. 2015. https://doi.org/10.1155/2015/575406

  41. Kiss, A., Inflammation in focus: the beginning and the end, Pathol. Oncol. Res., 2021, vol. 27. https://doi.org/10.3389/pore.2021.1610136

  42. Tercan, H., Riksen, N.P., Joosten, L.A.B., et al., Trained immunity: long-term adaptation in innate immune responses, Arterioscler., Thromb., Vasc. Biol., 2021, vol. 41, no. 1, pp. 55—61. https://doi.org/10.1161/ATVBAHA.120.314212

    Article  CAS  PubMed  Google Scholar 

  43. Ziogas, A. and Netea, M.G., Trained immunity-related vaccines: innate immune memory and heterologous protection against infections, Trends Mol. Med., 2022, vol. 28, no. 6, pp. 497—512. https://doi.org/10.1016/j.molmed.2022.03.009

    Article  CAS  PubMed  Google Scholar 

  44. Barton, G.M., A calculated response: control of inflammation by the innate immune system, J. Clin. Invest., 2008, vol. 118, no. 2, pp. 413—420. https://doi.org/10.1172/JCI34431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sun, L., Yang, X., Yuan, Z., and Wang, H., Metabolic reprogramming in immune response and tissue inflammation, Arterioscler., Thromb., Vasc. Biol., 2020, vol. 40, no. 9, pp. 1990—2001. https://doi.org/10.1161/ATVBAHA.120.314037

    Article  CAS  PubMed  Google Scholar 

  46. Domínguez-Andrés, J., van Crevel, R., Divangahi, M., and Netea, M.G., Designing the next generation of vaccines: relevance for future pandemics, mBio, 2020, vol. 11, no. 6. https://doi.org/10.1128/mBio.02616-20

  47. Netea, M.G., Joosten, L.A., Latz, E., et al., Trained immunity: a program of innate immune memory in health and disease, Science, 2016, vol. 352, no. 6284. https://doi.org/10.1126/science.aaf1098

  48. Kopf, M. and Nielsen, P.J., Training myeloid precursors with fungi, bacteria and chips, Nat. Immunol., 2018, vol. 19, no. 4, pp. 320—322. https://doi.org/10.1038/s41590-018-0073-7

    Article  CAS  PubMed  Google Scholar 

  49. Larenas-Linnemann, D., Rodriguez-Perez, N., Arias-Cruz, A., et al., Enhancing innate immunity against virus in times of COVID-19: trying to untangle facts from fictions, World Allergy Organ. J., 2020, vol. 13, no. 11. https://doi.org/10.1016/j.waojou.2020.100476

  50. Geckin, B., Konstantin Fohse, F., Dominguez-Andres, J., and Netea, M.G., Trained immunity: implications for vaccination, Curr. Opin. Immunol., 2022, vol. 77. https://doi.org/10.1016/j.coi.2022.102190

  51. Dominguez-Andres, J. and Netea, M.G., Long-term reprogramming of the innate immune system, J. Leukoc. Biol., 2019, vol. 105, no. 2, pp. 329—338. https://doi.org/10.1002/JLB.MR0318-104R

    Article  CAS  PubMed  Google Scholar 

  52. De Zuani, M. and Fric, J., Train the trainer: hematopoietic stem cell control of trained immunity, Front. Immunol., 2022, vol. 13. https://doi.org/10.3389/fimmu.2022.827250

  53. Arneth, B., Trained innate immunity, Immunol. Res., 2021, vol. 69, no. 1, pp. 1—7. https://doi.org/10.1007/s12026-021-09170-y

    Article  PubMed  Google Scholar 

  54. Bekkering, S., Blok, B.A., Joosten, L.A., et al., In vitro experimental model of trained innate immunity in human primary monocytes, Clin. Vaccine Immunol., 2016, vol. 23, no. 12, pp. 926—933. https://doi.org/10.1128/CVI.00349-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ciarlo, E., Heinonen, T., Theroude, C., et al., Trained immunity confers broad-spectrum protection against bacterial infections, J. Infect. Dis., 2020, vol. 222, no. 11, pp. 1869—1881. https://doi.org/10.1093/infdis/jiz692

    Article  CAS  PubMed  Google Scholar 

  56. Dominguez-Andres, J., Arts, R.J.W., Bekkering, S., et al., In vitro induction of trained immunity in adherent human monocytes, STAR Protoc., 2021, vol. 2, no. 1. https://doi.org/10.1016/j.xpro.2021.100365

  57. Drummer, C.V., Saaoud, F., Shao, Y., et al., Trained immunity and reactivity of macrophages and endothelial cells, Arterioscler., Thromb., Vasc. Biol., 2021, vol. 41, no. 3, pp. 1032—1046. https://doi.org/10.1161/ATVBAHA.120.315452

    Article  CAS  PubMed  Google Scholar 

  58. Hellinga, A.H., Tsallis, T., Eshuis, T., et al., In vitro induction of trained innate immunity by bIgG and whey protein extracts, Int. J. Mol. Sci., 2020, vol. 21, no. 23. https://doi.org/10.3390/ijms21239077

  59. Mourits, V.P., Arts, R.J.W., Novakovic, B., et al., The role of toll-like receptor 10 in modulation of trained immunity, Immunology, 2020, vol. 159, no. 3, pp. 289—297. https://doi.org/10.1111/imm.13145

    Article  CAS  PubMed  Google Scholar 

  60. Netea, M.G., Schlitzer, A., Placek, K., et al., Innate and adaptive immune memory: an evolutionary continuum in the host’s response to pathogens, Cell Host Microbe, 2019, vol. 25, no. 1, pp. 13—26. https://doi.org/10.1016/j.chom.2018.12.006

    Article  CAS  PubMed  Google Scholar 

  61. Pasco, S.T. and Anguita, J., Lessons from bacillus Calmette—Guérin: harnessing trained immunity for vaccine development, Cells, 2020, vol. 9, no. 9. https://doi.org/10.3390/cells9092109

  62. Peignier, A. and Parker, D., Trained immunity and host—pathogen interactions, Cell. Microbiol., 2020, vol. 22, no. 12. https://doi.org/10.1111/cmi.13261

  63. Locht, C. and Lerm, M., Good old BCG—what a century-old vaccine can contribute to modern medicine, J. Intern. Med., 2020, vol. 288, no. 6, pp. 611—613. https://doi.org/10.1111/joim.13195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Moulson, A.J. and Av-Gay, Y., BCG immunomodulation: from the “hygiene hypothesis” to COVID-19, Immunobiology, 2021, vol. 226, no. 1. https://doi.org/10.1016/j.imbio.2020.152052

  65. Taks, E.J.M., Moorlag, S., Netea, M.G., and van der Meer, J.W.M., Shifting the immune memory paradigm: trained immunity in viral infections, Annu. Rev. Virol., vol. 9, no. 1, pp. 469—489. https://doi.org/10.1146/annurev-virology-091919-072546

  66. Alsulaiman, J.W., Khasawneh, A.I., and Kheirallah, K.A., Could “trained immunity” be induced by live attenuated vaccines protect against COVID-19? Review of available evidence, J. Infect. Dev. Ctries., 2020, vol. 14, no. 9, pp. 957—962. https://doi.org/10.3855/jidc.12805

    Article  CAS  PubMed  Google Scholar 

  67. Chumakov, K., Avidan, M.S., Benn, C.S., et al., Old vaccines for new infections: exploiting innate immunity to control COVID-19 and prevent future pandemics, Proc. Natl. Acad. Sci. U.S.A., 2021, vol. 118, no. 21. https://doi.org/10.1073/pnas.2101718118

  68. Bekkering, S., Dominguez-Andres, J., Joosten, L.A.B., et al., Trained immunity: reprogramming innate immunity in health and disease, Annu. Rev. Immunol., 2021, vol. 39, pp. 667—693. https://doi.org/10.1146/annurev-immunol-102119-073855

    Article  CAS  PubMed  Google Scholar 

  69. Bindu, S., Dandapat, S., Manikandan, R., et al., Prophylactic and therapeutic insights into trained immunity: a renewed concept of innate immune memory, Hum. Vaccin. Immunother., 2022, vol. 18, no. 1. https://doi.org/10.1080/21645515.2022.2040238

  70. Sherwood, E.R., Burelbach, K.R., McBride, M.A., et al., Innate immune memory and the host response to infection, J. Immunol., 2022, vol. 208, no. 4, pp. 785—792. https://doi.org/10.4049/jimmunol.2101058

    Article  CAS  PubMed  Google Scholar 

  71. Marin-Hernandez, D., Nixon, D.F., and Hupert, N., Heterologous vaccine interventions: boosting immunity against future pandemics, Mol. Med., 2021, vol. 27, no. 1, p. 54. https://doi.org/10.1186/s10020-021-00317-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hu, Z., Lu, S.H., Lowrie, D.B., and Fan, X.Y., Trained immunity: a Yin-Yang balance, MedComm, 2022, vol. 3, no. 1. https://doi.org/10.1002/mco2.121

  73. Ross, E.A., Devitt, A., and Johnson, J.R., Macrophages: the good, the bad, and the gluttony, Front. Immunol., 2021, vol. 12. https://doi.org/10.3389/fimmu.2021.708186

  74. Prame Kumar, K., Nicholls, A.J., Wong, C.H.Y., Partners in crime: neutrophils and monocytes/macrophages in inflammation and disease, Cell Tissue Res., 2018, vol. 371, no. 3, pp. 551—565. https://doi.org/10.1007/s00441-017-2753-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Rawat, S., Vrati, S., and Banerjee, A., Neutrophils at the crossroads of acute viral infections and severity, Mol. Aspects Med., 2021, vol. 81. https://doi.org/10.1016/j.mam.2021.100996

  76. Schulz, C., Petzold, T., and Ishikawa-Ankerhold, H., Macrophage regulation of granulopoiesis and neutrophil functions, Antioxid. Redox Signaling, 2021, vol. 35, no. 3, pp. 182—191. https://doi.org/10.1089/ars.2020.8203

    Article  CAS  Google Scholar 

  77. Acevedo, O.A., Berrios, R.V., Rodriguez-Guilarte, L., et al., Molecular and cellular mechanisms modulating trained immunity by various cell types in response to pathogen encounter, Front. Immunol., 2021, vol. 12. https://doi.org/10.3389/fimmu.2021.745332

  78. Eiz-Vesper, B. and Schmetzer, H.M., Antigen-presenting cells: potential of proven und new players in immune therapies, Transfus. Med. Hemother., 2020, vol. 47, no. 6, pp. 429—431. https://doi.org/10.1159/000512729

    Article  PubMed  PubMed Central  Google Scholar 

  79. Arango Duque, G. and Descoteaux, A., Macrophage cytokines: involvement in immunity and infectious diseases, Front. Immunol., 2014, vol. 5. https://doi.org/10.3389/fimmu.2014.00491

  80. Yu, S., Ge, H., Li, S., and Qiu, H.J., Modulation of macrophage polarization by viruses: turning off/on host antiviral responses, Front. Microbiol., 2022, vol. 13. https://doi.org/10.3389/fmicb.2022.839585

  81. Banete, A., Barilo, J., Whittaker, R., and Basta, S., The activated macrophage—a tough fortress for virus invasion: how viruses strike back, Front. Microbiol., 2021, vol. 12. https://doi.org/10.3389/fmicb.2021.803427

  82. Patel, S. and Werstuck, G.H., Macrophage function and the role of GSK3, Int. J. Mol. Sci., 2021, vol. 22, no. 4, p. 2206. https://doi.org/10.3390/ijms22042206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Su, D.L., Lu, Z.M., Shen, M.N., et al., Roles of pro- and anti-inflammatory cytokines in the pathogenesis of SLE, J. Biomed. Biotechnol., 2012, vol. 2012. https://doi.org/10.1155/2012/347141

  84. Sanchez-Paulete, A.R., Teijeira, A., Cueto, F.J., et al., Antigen cross-presentation and T-cell cross-priming in cancer immunology and immunotherapy, Ann. Oncol., 2017, vol. 28, suppl. 12, pp. xii44—xii55. https://doi.org/10.1093/annonc/mdx237

    Article  CAS  PubMed  Google Scholar 

  85. Thaiss, C.A., Semmling, V., Franken, L., et al., Chemokines: a new dendritic cell signal for T-cell activation, Front. Immunol., 2011, vol. 2. https://doi.org/10.3389/fimmu.2011.00031

  86. Kurts, C., Robinson, B.W., and Knolle, P.A., Cross-priming in health and disease, Nat. Rev. Immunol., 2010, vol. 10, no. 6, pp. 403—414. https://doi.org/10.1038/nri2780

    Article  CAS  PubMed  Google Scholar 

  87. Kumar, V., Innate lymphoid cell and adaptive immune cell cross-talk: a talk meant not to forget, J. Leukoc. Biol., 2020, vol. 108, no. 1, pp. 397—417. https://doi.org/10.1002/JLB.4MIR0420-500RRR

    Article  CAS  PubMed  Google Scholar 

  88. Bennstein, S.B. and Uhrberg, M., Biology and therapeutic potential of human innate lymphoid cells, FEBS J., 2022, vol. 289, no. 14, pp. 3967—3981. https://doi.org/10.1111/febs.15866

    Article  CAS  PubMed  Google Scholar 

  89. Pelletier, A. and Stockmann, C., The metabolic basis of ILC plasticity, Front. Immunol., 2022, vol. 13. https://doi.org/10.3389/fimmu.2022.858051

  90. Favaro, R.R., Phillips, K., Delaunay-Danguy, R., et al., Emerging concepts in innate lymphoid cells, memory, and reproduction, Front. Immunol., 2022, vol. 13. https://doi.org/10.3389/fimmu.2022.824263

  91. Cobb, L.M. and Verneris, M.R., Therapeutic manipulation of innate lymphoid cells, JCI Insight, 2021, vol. 6, no. 6. https://doi.org/10.1172/jci.insight.146006

  92. Yin, G., Zhao, C., and Pei, W., Crosstalk between macrophages and innate lymphoid cells (ILCs) in diseases, Int. Immunopharmacol., 2022, vol. 110. https://doi.org/10.1016/j.intimp.2022.108937

  93. Verma, D., Verma, M., and Mishra, R., Stem cell therapy and innate lymphoid cells, Stem Cells Int., 2022, vol. 2022. https://doi.org/10.1155/2022/3530520

  94. Mitroulis, I., Ruppova, K., Wang, B., et al., Modulation of myelopoiesis progenitors is an integral component of trained immunity, Cell, 2018, vol. 172, nos. 1—2, pp. 147—161. e12. https://doi.org/10.1016/j.cell.2017.11.034

  95. Song, W.M. and Colonna, M., Immune training unlocks innate potential, Cell, 2018, vol. 172, nos. 1—2, pp. 3—5. https://doi.org/10.1016/j.cell.2017.12.034

    Article  CAS  PubMed  Google Scholar 

  96. Fanucchi, S., Dominguez-Andres, J., Joosten, L.A.B., et al., The intersection of epigenetics and metabolism in trained immunity, Immunity, 2021, vol. 54, no. 1, pp. 32—43. https://doi.org/10.1016/j.immuni.2020.10.011

    Article  CAS  PubMed  Google Scholar 

  97. Saeed, S., Quintin, J., Kerstens, H.H., et al., Epigenetic programming of monocyte-to-macrophage differentiation and trained innate immunity, Science, 2014, vol. 345, no. 6204. https://doi.org/10.1126/science.1251086

  98. Ferreira, A.V., Domiguez-Andres, J., and Netea, M.G., The role of cell metabolism in innate immune memory, J. Innate Immun., 2022, vol. 14, no. 1, pp. 42—50. https://doi.org/10.1159/000512280

    Article  CAS  PubMed  Google Scholar 

  99. Diskin, C. and Palsson-McDermott, E.M., Metabolic modulation in macrophage effector function, Front. Immunol., 2018, vol. 9. https://doi.org/10.3389/fimmu.2018.00270

  100. Llibre, A., Dedicoat, M., Burel, J.G., et al., Host immune-metabolic adaptations upon mycobacterial infections and associated co-morbidities, Front. Immunol., 2021, vol. 12. https://doi.org/10.3389/fimmu.2021.747387

  101. Gauthier, T. and Chen, W., Modulation of macrophage immunometabolism: a new approach to fight infections, Front. Immunol., 2022, vol. 13. https://doi.org/10.3389/fimmu.2022.780839

  102. Saini, A., Ghoneim, H.E., Lio, C.J., et al., Gene regulatory circuits in innate and adaptive immune cells, Annu. Rev. Immunol., 2022, vol. 40, pp. 387—411. https://doi.org/10.1146/annurev-immunol-101320-025949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Topfer, E., Boraschi, D., and Italiani, P., Innate immune memory: the latest frontier of adjuvanticity, J. Immunol. Res., 2015, vol. 2015. https://doi.org/10.1155/2015/478408

  104. Pei, G. and Dorhoi, A., NOD-like receptors: guards of cellular homeostasis perturbation during infection, Int. J. Mol. Sci., 2021, vol. 22, no. 13. https://doi.org/10.3390/ijms22136714

  105. Duan, T., Du, Y., Xing, C., et al., Toll-like receptor signaling and its role in cell-mediated immunity, Front. Immunol., 2022, vol. 13. https://doi.org/10.3389/fimmu.2022.812774

  106. Behzadi, P., Garcia-Perdomo, H.A., and Karpinski, T.M., Toll-like receptors: general molecular and structural biology, J. Immunol. Res., 2021, vol. 2021. https://doi.org/10.1155/2021/9914854

  107. Jannuzzi, G.P., de Almeida, J.R.F., Paulo, L.N.M., et al., Intracellular PRRs activation in targeting the immune response against fungal infections, Front. Cell. Infect. Microbiol., 2020, vol. 10. https://doi.org/10.3389/fcimb.2020.591970

  108. Lee, B.L. and Barton, G.M., Trafficking of endosomal Toll-like receptors, Trends Cell. Biol., 2014, vol. 24, no. 6, pp. 360—369. https://doi.org/10.1016/j.tcb.2013.12.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Blasius, A.L. and Beutler, B., Intracellular toll-like receptors, Immunity, 2010, vol. 32, no. 3, pp. 305—315. https://doi.org/10.1016/j.immuni.2010.03.012

    Article  CAS  PubMed  Google Scholar 

  110. Petes, C., Odoardi, N., and Gee, K., The toll for trafficking: toll-like receptor 7 delivery to the endosome, Front. Immunol., 2017, vol. 8. https://doi.org/10.3389/fimmu.2017.01075

  111. Xia, P., Wu, Y., Lian, S., et al., Research progress on toll-like receptor signal transduction and its roles in antimicrobial immune responses, Appl. Microbiol. Biotechnol., 2021, vol. 105, no. 13, pp. 5341—5355. https://doi.org/10.1007/s00253-021-11406-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Huang, L., Ge, X., Liu, Y., et al., The role of toll-like receptor agonists and their nanomedicines for tumor immunotherapy, Pharmaceutics, 2022, vol. 14, no. 6. https://doi.org/10.3390/pharmaceutics14061228

  113. Diaz-Dinamarca, D.A., Salazar, M.L., Castillo, B.N., et al., Protein-based adjuvants for vaccines as immunomodulators of the innate and adaptive immune response: current knowledge, challenges, and future opportunities, Pharmaceutics, 2022, vol. 14, no. 8. https://doi.org/10.3390/pharmaceutics14081671

  114. Sartorius, R., Trovato, M., Manco, R., et al., Exploiting viral sensing mediated by toll-like receptors to design innovative vaccines, NPJ Vaccines, 2021, vol. 6, no. 1, p. 127. https://doi.org/10.1038/s41541-021-00391-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Rumpret, M., von Richthofen, H.J., Peperzak, V., and Meyaard, L., Inhibitory pattern recognition receptors, J. Exp. Med., 2022, vol. 219, no. 1. https://doi.org/10.1084/jem.20211463

  116. Mielcarska, M.B., Bossowska-Nowicka, M., and Toka, F.N., Cell surface expression of endosomal toll-like receptors-a necessity or a superfluous duplication?, Front. Immunol., 2020, vol. 11. https://doi.org/10.3389/fimmu.2020.620972

  117. Turley, J.L. and Lavelle, E.P., Resolving adjuvant mode of action to enhance vaccine efficacy, Curr. Opin. Immunol., 2022, vol. 77. https://doi.org/10.1016/j.coi.2022.102229

  118. Pulendran, B., Arunachalam, P.S., and O’Hagan, D.V., Emerging concepts in the science of vaccine adjuvants, Nat. Rev. Drug Discovery, 2021, no. 20, pp. 454—475. https://doi.org/10.1038/s41573-021-00163-y

  119. Kumar, S., Sunagar, R., and Gosselin, E., Bacterial protein toll-like-receptor agonists: a novel perspective on vaccine adjuvants, Front. Immunol., 2019, vol. 10. https://doi.org/10.3389/fimmu.2019.01144

  120. Yang, J.X., Tseng, J.C., Yu, G.Y., et al., Recent advances in the development of toll-like receptor agonist-based vaccine adjuvants for infectious diseases, Pharmaceutics, 2022, vol. 14, no. 2. https://doi.org/10.3390/pharmaceutics14020423

  121. Xu, Z. and Moyle, P.M., Bioconjugation approaches to producing subunit vaccines composed of protein or peptide antigens and covalently attached toll-like receptor ligands, Bioconjugate Chem., 2018, vol. 29, no. 3, pp. 572—586. https://doi.org/10.1021/acs.bioconjchem.7b00478

    Article  CAS  Google Scholar 

  122. Lee, W. and Suresh, M., Vaccine adjuvants to engage the cross-presentation pathway, Front. Immunol., 2022, vol. 13. https://doi.org/10.3389/fimmu.2022.940047

  123. Kaur, A., Baldwin, J., Brar, D., et al., Toll-like receptor (TLR) agonists as a driving force behind next-generation vaccine adjuvants and cancer therapeutics, Curr. Opin. Chem. Biol., 2022, vol. 70. https://doi.org/10.1016/j.cbpa.2022.102172

  124. Farooq, M., Batool, M., Kim, M.S., and Choi, S., Toll-like receptors as a therapeutic target in the era of immunotherapies, Front. Cell Dev. Biol., 2021, vol. 9. https://doi.org/10.3389/fcell.2021.756315

  125. Bogunovic, D., Manches, O., Godefroy, E., et al., TLR4 engagement during TLR3-induced proinflammatory signaling in dendritic cells promotes IL-10-mediated suppression of antitumor immunity, Cancer Res., 2011, vol. 71, no. 16, pp. 5467—5476. https://doi.org/10.1158/0008-5472.CAN-10-3988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Goodridge, H.S., Ahmed, S.S., Curtis, N., et al., Harnessing the beneficial heterologous effects of vaccination, Nat. Rev. Immunol., 2016, vol. 16, no. 6, pp. 392—400. https://doi.org/10.1038/nri.2016.43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Shann, F., The non-specific effects of vaccines, Arch. Dis. Child., 2010, vol. 95, no. 9, pp. 662—667. https://doi.org/10.1136/adc.2009.157537

    Article  PubMed  Google Scholar 

  128. Aaby, P., Roth, A., Ravn, H., et al., Randomized trial of BCG vaccination at birth to low-birth-weight children: beneficial nonspecific effects in the neonatal period?, J. Infect. Dis., 2011, vol. 204, no. 2, pp. 245—252. https://doi.org/10.1093/infdis/jir240

    Article  CAS  PubMed  Google Scholar 

  129. Bagcchi, S., WHO’s global tuberculosis report 2022, Lancet Microbe, 2023, vol. 4, no. 1. e20. https://doi.org/10.1016/S2666-5247(22)00359-7

    Article  PubMed  Google Scholar 

  130. Escobar, L.E., Molina-Cruz, A., and Barillas-Mury, C., BCG vaccine protection from severe coronavirus disease 2019 (COVID-19), Proc. Natl. Acad. Sci. U.S.A., 2020, vol. 117, no. 30, pp. 17720—17726. https://doi.org/10.1073/pnas.2008410117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Aaby, P. and Benn, C.S., Developing the concept of beneficial non-specific effect of live vaccines with epidemiological studies, Clin. Microbiol. Infect., 2019, vol. 25, no. 12, pp. 1459—1467. https://doi.org/10.1016/j.cmi.2019.08.011

    Article  CAS  PubMed  Google Scholar 

  132. Larsen, S.E., Williams, B.D., Rais, M., et al., It takes a village: the multifaceted immune response to Mycobacterium tuberculosis infection and vaccine-induced immunity, Front. Immunol., 2022, vol. 13. https://doi.org/10.3389/fimmu.2022.840225

  133. Nieuwenhuizen, N.E., Kulkarni, P.S., Shaligram, U., et al., The recombinant bacille Calmette—Guérin vaccine VPM1002: ready for clinical efficacy testing, Front. Immunol., 2017, vol. 8. https://doi.org/10.3389/fimmu.2017.01147

  134. Nieuwenhuizen, N.E. and Kaufmann, S.H.E., Next-generation vaccines based on bacille Calmette—Guérin, Front. Immunol., 2018, vol. 9. https://doi.org/10.3389/fimmu.2018.00121

  135. Camilli, G., Bohm, M., Piffer, A.P., et al., ꞵ-Glucan-induced reprogramming of human macrophages inhibits NLRP3 inflammasome activation in cryopyrinopathies, J. Clin. Invest., 2020, vol. 130, no. 9, pp. 4561—4573. https://doi.org/10.1172/JCI134778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Moorlag, S., van Deuren, R.P., van Werkhoven, C.H., et al., Safety and COVID-19 symptoms in individuals recently vaccinated with BCG: a retrospective cohort study, Cell. Rep. Med., 2020, vol. 1, no. 5. https://doi.org/10.1016/j.xcrm.2020.100073

  137. Smith, S.G., Kleinnijenhuis, J., Netea, M.G., and Dockrell, H.M., Whole blood profiling of bacillus Calmette–Guérin-induced trained innate immunity in infants identifies epidermal growth factor, IL-6, platelet-derived growth factor-AB/BB, and natural killer cell activation, Front. Immunol., 2017, vol. 8. https://doi.org/10.3389/fimmu.2017.00644

  138. Lee, M.H. and Kim, B.J., COVID-19 vaccine development based on recombinant viral and bacterial vector systems: combinatorial effect of adaptive and trained immunity, J. Microbiol., 2022, vol. 60, no. 3, pp. 321—334. https://doi.org/10.1007/s12275-022-1621-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Gupta, P.K., New disease old vaccine: is recombinant BCG vaccine an answer for COVID-19?, Cell. Immunol., 2020, vol. 356. https://doi.org/10.1016/j.cellimm.2020.104187

  140. Kaur, G., Singh, S., Nanda, S., et al., Fiction and facts about BCG imparting trained immunity against COVID-19, Vaccines (Basel), 2022, vol. 10, no. 7. https://doi.org/10.3390/vaccines10071006

  141. Melenotte, C., Silvin, A., Goubet, A.G., et al., Immune responses during COVID-19 infection, Oncoimmunology, 2020, vol. 9, no. 1. https://doi.org/10.1080/2162402X.2020.1807836

  142. Kleen, T.O., Galdon, A.A., MacDonald, A.S., and Dalgleish, A.G., Mitigating coronavirus induced dysfunctional immunity for at-risk populations in COVID-19: trained immunity, BCG and “New Old Friends,” Front. Immunol., 2020, vol. 11. https://doi.org/10.3389/fimmu.2020.02059

  143. Seo, S.U. and Seong, B.L., Prospects on repurposing a live attenuated vaccine for the control of unrelated infections, Front. Immunol., 2022, vol. 13. https://doi.org/10.3389/fimmu.2022.877845

  144. Basak, P., Sachdeva, N., and Dayal, D., Can BCG vaccine protect against COVID-19 via trained immunity and tolerogenesis?, Bioessays, 2021, vol. 43, no. 3. https://doi.org/10.1002/bies.202000200

  145. Mysore, V., Cullere, X., Settles, M.L., et al., Protective heterologous T cell immunity in COVID-19 induced by the trivalent MMR and Tdap vaccine antigens, Med (New York), 2021, vol. 2, no. 9, pp. 1050—1071. e7. https://doi.org/10.1016/j.medj.2021.08.004

  146. Malik, Y.S., Ansari, M.I., Ganesh, B., et al., BCG vaccine: a hope to control COVID-19 pandemic amid crisis, Hum. Vaccin. Immunother., 2020, vol. 16, no. 12, pp. 2954—2962. https://doi.org/10.1080/21645515.2020.1818522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Jung, H.E. and Lee, H.K., Current understanding of the innate control of toll-like receptors in response to SARS-CoV-2 infection, Viruses, 2021, vol. 13, no. 11. https://doi.org/10.3390/v13112132

  148. Kayesh, M.E.H., Kohara, M., and Tsukiyama-Kohara, K., An overview of recent insights into the response of TLR to SARS-CoV-2 infection and the potential of TLR agonists as SARS-CoV-2 vaccine adjuvants, Viruses, 2021, vol. 13, no. 11. https://doi.org/10.3390/v13112302

  149. Gong, W., Aspatwar, A., Wang, S., et al., COVID-19 pandemic: SARS-CoV-2 specific vaccines and challenges, protection via BCG trained immunity, and clinical trials, Expert Rev. Vaccines, 2021, vol. 20, no. 7, pp. 857—880. https://doi.org/10.1080/14760584.2021.1938550

    Article  CAS  PubMed  Google Scholar 

  150. Brueggeman, J.M., Zhao, J., Schank, M., et al., Trained immunity: an overview and the impact on COVID-19, Front. Immunol., 2022, vol. 13. https://doi.org/10.3389/fimmu.2022.837524

  151. Cox, A., Cevik, H., Feldman, H.A., et al., Targeting natural killer cells to enhance vaccine responses, Trends Pharmacol. Sci., 2021, vol. 42, no. 9, pp. 789—801. https://doi.org/10.1016/j.tips.2021.06.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was carried out with the support of the Kurchatov Institute Research Center.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L. G. Kondratyeva or E. D. Sverdlov.

Ethics declarations

The authors declare that they have no conflicts of interest.

This article does not contain any studies using animals as an object.

This article does not contain any research involving people as an object.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alekseenko, I.V., Vasilov, R.G., Kondratyeva, L.G. et al. The Cellular and Epigenetic Aspects of Trained Immunity and Prospects for Creation of Universal Vaccines on the Eve of More Frequent Pandemics. Russ J Genet 59, 851–868 (2023). https://doi.org/10.1134/S1022795423090028

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795423090028

Keywords:

Navigation