Skip to main content
Log in

Genetic Diversity and Population Structure of Traditional Chinese Herb Radix bupleuri Resources Using Genome-Wide SNPs through Genotyping-by-Sequencing

  • PLANT GENETICS
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Radix bupleuri, is an important traditional Chinese medicine resource. The lack of genetic molecular markers of Radix bupleuri turned to be an obstacle for genetic analysis and accessions identification. In this study, SNP loci were detected based on genotyping-by-sequencing (GBS) and the genetic diversity of 39 Bupleurum varieties were examined. A total of 25.1 Gb of data was obtained by sequencing, with an average of 0.64 Gb per sample. After screening, 83 898 high-quality SNPs were obtained. The 39 accessions could be divided into three major groups based on population structure analysis, Neighbor-joining clustering and principal component analysis. The average observed heterozygosity and expected heterozygosity of Bupleurum populations were 0.24 and 0.17, respectively, indicating that Bupleurum populations from five different provinces had a low level of genetic diversity. Population nucleotide diversity analysis and analysis of molecular variance showed that the percentage of intrapopulation variation was 92.13%, while the percentage of interpopulation variation was only 7.87%. There was relative aggregation of Bupleurum samples with the same geographical origin, but the division of population structure was not completely correlated with sample origin. The results showed that the genetic diversity of the materials was narrow. This provides a good basis for the genetic breeding and protection of species diversity of Bupleurum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Feng, Y.J., Wu, Z.W., Luo, Y.Y., et al., A new triterpene diglycoside from the roots of Bupleurum chinense DC. and its inhibitory effect on adipogensis in 3T3-L1 cells, Med. Chem. Res., 2019, vol. 28, pp. 239—245. https://doi.org/10.1007/s00044-018-2279-5

    Article  Google Scholar 

  2. Pan, S.L., Bupleurum Species: Scientific Evaluation and Clinical Applications, Boca Raton: CRC Press, 2006.

    Book  Google Scholar 

  3. Law, Y.K., Mo, J.F., Wong, K.W., Autophagic effects of Chaihu (dried roots of Bupleurum chinense DC or Bupleurum scorzoneraefolium Wild), Chinese Med., 2014, 9:21. vol. 9, no. 1. https://doi.org/10.1186/1749-8546-9-21.

  4. Yu, J., Deng, A., Wu, L., et al., Osteoclast-inhibiting saikosaponin derivatives from Bupleurum Chinense, Fitoterapia, 2013, vol. 85, pp. 101—108. https://doi.org/10.1016/j.fitote.2013.01.005

    Article  Google Scholar 

  5. Li, D.Q., Wu, J., Liu, L.Y., et al., Cytotoxic triterpenoid glycosides (saikosaponins) from the roots of Bupleurum chinense, Bioorg. Med. Chem. Lett., 2015, vol. 25, no. 18, pp. 3887—3892. https://doi.org/10.1016/j.bmcl.2015.07.053

    Article  Google Scholar 

  6. Li, H.Y., Zhao, Y.H., Zeng, M.J., et al., Saikosaponin D relieves unpredictable chronic mild stress induced depressive-like behavior in rats: involvement of HPA axis and hippocampal neurogenesis, Psychopharmacology, 2017, vol. 234, pp. 3385—3394. https://doi.org/10.1007/s00213-017-4720-8

    Article  Google Scholar 

  7. Wang, Y., Qiang, G., Cheng, Z., et al., New saikosaponins from the roots of Bupleurum chinense, Phytochem. Lett., 2017, vol. 21, pp. 183—189. https://doi.org/10.1016/j.phytol.2017.06.005

    Article  Google Scholar 

  8. Wang, H.W., Liu, M., Zhong, T.D., et al., Saikosaponin-d attenuates ventilator-induced lung injury in rats, Int. J. Clin. Exp. Med., 2015, vol. 8, no. 9, pp. 15137—15145. http://www.ijcem.com/ISSN:1940-5901/IJCEM0004264.

  9. Chen, X.Q., Chen, S.J., Liang, W.N., et al., Saikosaponin A attenuates perimenopausal depression-like symptoms by chronic unpredictable mild stress, Neurosci. Lett., 2018, vol. 662, pp. 283—289. https://doi.org/10.1016/j.neulet.2017.09.046

    Article  Google Scholar 

  10. Lorrai, I., Maccioni, P., Carai, M., et al., Suppressing effect of saikosaponin A, an active ingredient of Bupleurum falcatum, on chocolate self-administration and reinstatement of chocolate seeking in rats, Neurosci. Lett., 2017, vol. 638, pp. 211—217. https://doi.org/10.1016/j.neulet.2016.12.019

    Article  Google Scholar 

  11. National Pharmacopoeia Committee, Pharmacopoeia of Peoples Republic of China, Beijing: Chemical Industry Press, 2020, part 1, appendix 2, p. 293.

  12. Sui, C., He, W.J., Lin, C.S., et al., Development of genomic SSR and potential EST-SSR markers in Bupleurum chinense DC., Afr. J. Biotechnol., 2009, vol. 8, no. 22, pp. 6233—6240. https://doi.org/10.4314/ajb.v8i22.66126

    Article  Google Scholar 

  13. Zhao, X., Liu, C., Xue, W., et al., ISSR research on germplasm of Bupleurum chinense DC. in Beijing, Mod. Chin. Med., 2015, vol. 17, no. 10, pp. 1008—1013. https://doi.org/10.13313/j.issn.1673-4890.2015.10.004

    Article  Google Scholar 

  14. Yang, W., Bai, Y., and Hu, J.Y., ISSR research on germplasm of Bupleurum chinense DC.in Baokang, Chin. Med. J. Res. Pract., 2013, vol. 27, no. 2, pp. 25—27. https://doi.org/10.13728/j.1673-6427.2013.02.008

    Article  Google Scholar 

  15. Lee, K.J., Lee, J.R., Sebasti, N.R., et al., Genetic diversity assessed by genotyping by sequencing (GBS) in watermelon germplasm, Genes, 2019, vol. 10, pp. 822—834. https://doi.org/10.3390/genes10100822

    Article  Google Scholar 

  16. Fu, Y.B. and Peterson, G.W., Genetic diversity analysis with 454 pyrosequencing and genomic reduction confirmed the eastern and western division in the cultivated barley gene pool, Plant Genome, 2011, vol. 4, no. 3, pp. 226—237. https://doi.org/10.3835/plantgenome2011.08.0022

    Article  Google Scholar 

  17. Peterson, B.K., Weber, J.N., Kay, E.H., et al., Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species, PLoS One, 2012, vol. 7. e37135. https://doi.org/10.1371/journal.pone.0037135

    Article  Google Scholar 

  18. Peterson, G., Dong, Y., Horbach, C., et al., Genotyping-by-sequencing for plant genetic diversity analysis: a lab guide for SNP genotyping, Diversity, 2014, vol. 6, no. 4, pp. 665—680. https://doi.org/10.3390/d6040665

    Article  Google Scholar 

  19. Yu, D., Wang, H., Gu, W., et al., Genetic diversity and population structure of popcorn germplasm resources using genome-wide SNPs through genotyping-by-sequencing, Genet. Resour. Crop Evol., 2021, vol. 68, pp. 2379—2389. https://doi.org/10.1007/s10722-021-01137-0

    Article  Google Scholar 

  20. Lee, H.Y., Jang, S., Yu, C.R., et al., Population structure and genetic diversity of Cucurbita moschata based on genome-wide high-quality SNPs, Plants, 2020, vol. 10, no. 1, pp. 56—65. https://doi.org/10.3390/plants10010056

    Article  Google Scholar 

  21. Yang, X., Tan, B., Liu, H., et al., Genetic diversity and population structure of Asian and European common wheat accessions based on genotyping-by-sequencing, Front. Genet., 2020, vol. 11. e580782. https://doi.org/10.21203/rs.2.17640/v1

    Article  Google Scholar 

  22. Li, H. and Durbin, R., Fast and accurate short read alignment with Burrows—Wheeler transform, Bioinformatics, 2009, vol. 25, no. 14, pp. 1754—1760. https://doi.org/10.1093/bioinformatics/btp324

    Article  Google Scholar 

  23. Li, H., Handsaker, B., Wysoker, A., et al., The sequence alignment/map format and SAMtools, Bioinformatics, 2009, vol. 25, no. 16, pp. 2078—2079. https://doi.org/10.1093/bioinformatics/btp352

    Article  Google Scholar 

  24. Wang, K., Li, M., and Hakonarson, H., ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data, Nucleic Acids Res., 2010, vol. 38, no. 16. e164. https://doi.org/10.1093/nar/gkq603

    Article  Google Scholar 

  25. Alexander, D.H., Novembre, J., and Lange, K., Fast model-based estimation of ancestry in unrelated individuals, Genome. Res., 2009, vol. 19, pp. 1655—1664. https://doi.org/10.1101/gr.094052.109

    Article  Google Scholar 

  26. Excoffier, L., Laval, G., and Schneider, S., Arlequin (version 3.0): an integrated software package for population genetics data analysis, Evol. Bioinf. Online, 2005, vol. 1, pp. 47—50. https://doi.org/10.1143/JJAP.34.L418

    Article  Google Scholar 

  27. Nei, M., Estimation of average heterozygosity and genetic distance from a small number of individuals, Genetics, 1978, vol. 89, no. 3, pp. 583—590. https://doi.org/10.1007/BF00155576

    Article  Google Scholar 

  28. World Health Organization, WHO Monographs on Selected Medicinal Plants, Geneva: World Health Organization, 1999, vol. 1.

    Google Scholar 

  29. Huang, H.Q., Zhang, X., Xu, Z.X., et al., Fast determination of saikosaponins in Bupleurum by rapid resolution liquid chromatography with evaporative light scattering detection. J. Pharm. Biomed. Anal., 2009, vol. 49, no. 4, pp. 1048—1055. https://doi.org/10.1016/j.jpba.2009.01.011

    Article  Google Scholar 

  30. Huang, W., Sun, P., Zhang, W.S., et al., Genetic diversity of Bupleurum chinense DC. populations from different altitudes in Dongling mountain district in Beijing, Plant Genet. Resour., 2008, vol. 9, no. 4, pp. 453—457.

    Google Scholar 

  31. Ke, S.Y., Shi, L.L., Ma, Y.Z., et al., Evaluation of the genetic diversity of Bupleurum using amplified fragment length polymorphism analysis, Genet. Mol. Res., 2015, vol. 14, no. 1, pp. 2590—2599. https://doi.org/10.4238/2015.March.30.18

    Article  Google Scholar 

  32. Du, S.M., Wang, G., Liu, Y.M., et al., Study on biological materials with genetic diversity of Bupleurum marginatum in Northwest of Hubei province of China based on ISSR, Adv. Mat. Res., 2013, vol. 830, pp. 463—468. https://doi.org/10.4028/www.scientific.net/AMR.830.463

    Article  Google Scholar 

  33. Li, Y.H., Yu, X.L., Ou, X.J., et al., Genetic diversity of different origin Bupleurum chinese detected by ISSR analysis, Lishizhen Med. Mater. Med. Res., 2018, vol. 29, pp. 1728—1731.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We would like to thank Springer Nature for providing linguistic assistance for manuscript preparation.

Funding

This work was supported by the Key project at central government level: The ability establishment of sustainable use for valuable Chinese medicine resources (2060302), the State Key Laboratory of Pharmaceutical New-tech for Chinese Medicine (SKL2020M0302) and the Talent training project funded by the central government to support the reform and development of local colleges and Universities (ZYRCB2021008).

Author information

Authors and Affiliations

Authors

Contributions

M. Jiang, S. Yan, W.C. Ren, and N.N. Xing contributed equally to this work.

Corresponding author

Correspondence to W. Ma.

Ethics declarations

The authors declare that they have no conflicts of interest.

This aitical does not contain any experiment with human participants or animals.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, M., Yan, S., Ren, W.C. et al. Genetic Diversity and Population Structure of Traditional Chinese Herb Radix bupleuri Resources Using Genome-Wide SNPs through Genotyping-by-Sequencing. Russ J Genet 58, 1485–1492 (2022). https://doi.org/10.1134/S1022795422120055

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795422120055

Keywords:

Navigation