Skip to main content
Log in

Intronic Number Polymorphism in the Genes Encoding Potassium Channel Specific Venom Toxins from Scorpion

  • SHORT COMMUNICATIONS
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The dynamic evolution of the scorpion peptide genes in response to selective forces is poorly understood so far. This work aimed to address this issue. We identified a novel K+-channel specific toxin-like peptide with three disulfide bridges from the scorpion Androctonus bicolor, which was named as abTx1. We also cloned and sequenced the genomic genes encoding abTx1 and other 11 K+-channel specific peptides from the scorpion Mesobuthus martensii Karsch. We found that the genes of BmTx1, BmKcug2, BmTx4, BmTx2, BmKcug1a, BmP08, sKTx2 and BmTxKS3 contain two conserved introns, whereas those of BmK38, BmK39, BmKcugx and abTx1 have only one conserved intron. Based on the phylogenetic pattern of the 12 peptides and the commonly accepted view that all the scorpion peptides with three disulfide bridges had derived from a common origin, it can be concluded that the genomic genes of BmTx1, BmKcug2, BmTx4, BmTx2, BmKcug1a, BmP08, sKTx2 and BmTxKS3 gained an intron in their 5'UTRs during the scorpion evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Graveley, B.R., Alternative splicing: increasing diversity in the proteomic world, Trends Genet., 2001, vol. 17, no. 2, pp. 100—107.

    Article  CAS  PubMed  Google Scholar 

  2. Keren, H., Lev-Maor, G., and Ast, G., Alternative splicing and evolution: diversification, exon definition and function, Nat. Rev. Genet., 2010, vol. 11, no. 5, pp. 345—355.

    Article  CAS  PubMed  Google Scholar 

  3. Maniatis, T. and Tasic, B., Alternative pre-mRNA splicing and proteome expansion in metazoans, Nature, 2002, vol. 418, no. 6894, pp. 236—243.

    Article  CAS  PubMed  Google Scholar 

  4. Zeng, X.C., Luo, F., and Li, W.X., Characterization of a novel cDNA encoding a short venom peptide derived from venom gland of scorpion Buthus martensii Karsch: trans-splicing may play an important role in the diversification of scorpion venom peptides, Peptides, 2006, vol. 27, no. 4, pp. 675—681.

    Article  CAS  PubMed  Google Scholar 

  5. Modrek, B., Resch, A., Grasso, C., and Lee, C., Genome-wide detection of alternative splicing in expressed sequences of human genes, Nucleic Acids Res., 2001, vol. 29, no. 13, pp. 2850—2859.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Brett, D., Pospisil, H., Valcárcel, J., et al., Alternative splicing and genome complexity, Nat. Genet., 2002, vol. 30, no. 1, pp. 29—30.

    Article  CAS  PubMed  Google Scholar 

  7. Nott, A., Meislin, S.H., and Moore, M.J., A quantitative analysis of intron effects on mammalian gene expression, RNA, 2003, vol. 9, no. 5, pp. 607—617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jeffares, D.C., Mourier, T., and Penny, D., The biology of intron gain and loss, Trends Genet., 2006, vol. 22, no. 1, pp. 16—22.

    Article  CAS  PubMed  Google Scholar 

  9. Wang, H.F., Feng, L., and Niu, D.K., Relationship between mRNA stability and intron presence, Biochem. Biophys. Res. Commun., 2007, vol. 354, no. 1, pp. 203—208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhao, C. and Hamilton, T., Introns regulate the rate of unstable mRNA decay, J. Biol. Chem., 2007, vol. 282, no. 28, pp. 20230—20237.

    Article  CAS  PubMed  Google Scholar 

  11. Valencia, P., Dias, A.P., Reed, R., Splicing promotes rapid and efficient mRNA export in mammalian cells, Proc. Natl. Akad. Sci. U.S.A., 2008, vol. 105, no. 9, pp. 3386—3391.

    Article  CAS  Google Scholar 

  12. Callis, J., Fromm, M., and Walbot, V., Introns increase gene expression in cultured maize cells, Genes Dev., 1987, vol. 1, no. 10, pp. 1183—1200.

    Article  CAS  PubMed  Google Scholar 

  13. Chung, B.Y., Simons, C., Firth, A.E., et al., Effect of 5'UTR introns on gene expression in Arabidopsis thaliana, BMC. Genomics, 2006, vol. 7, p. 120.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Rose, A.B., Intron-mediated regulation of gene expression, Curr. Top Microbiol. Immunol. 2008, vol. 326, pp. 277—290.

    CAS  PubMed  Google Scholar 

  15. Samadder, P., Sivamani, E., Lu, J., et al., Transcriptional and post-transcriptional enhancement of gene expression by the 5' UTR intron of rice rubi3 gene in transgenic rice cells, Mol. Genet. Genomics, 2008, vol. 279, no. 4, pp. 429—439.

    Article  CAS  PubMed  Google Scholar 

  16. Cenik, C., Derti, A., Mellor, J.C., et al., Genome-wide functional analysis of human 5' untranslated region introns, Genome Biol., 2010, vol. 11, no. 3, p. R29.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Li, W., Tucker, A.E., Sung, W., et al., Extensive, recent intron gains in Daphnia populations, Science, 2009, vol. 326, no. 5957, pp. 1260—1262.

    Article  CAS  PubMed  Google Scholar 

  18. Roy, S.W. and Irimia, M., Mystery of intron gain: new data and new models, Trends Genet., 2009, vol. 25, no. 2, pp. 67—73.

    Article  CAS  PubMed  Google Scholar 

  19. Cavalier-Smith, T., Economy, speed and size matter: evolutionary forces driving nuclear genome miniaturization and expansion, Ann. Bot., 2005, vol. 95, no. 1, pp. 147—175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Modrek, B. and Lee, C.J., Alternative splicing in the human, mouse and rat genomes is associated with an increased frequency of exon creation and/or loss, Nat. Genet., 2003, vol. 34, no. 2, pp. 177—180.

    Article  CAS  PubMed  Google Scholar 

  21. Zeng, X.C., Luo, F., and Li, W.X., Molecular dissection of venom from Chinese scorpion Mesobuthus martensii: identification and characterization of four novel disulfide-bridged venom peptides, Peptides, 2006, vol. 27, no. 7, pp. 1745—1754.

    Article  CAS  PubMed  Google Scholar 

  22. Froy, O., Sagiv, T., Poreh, M., et al., Dynamic diversification from a putative common ancestor of scorpion toxins affecting sodium, potassium, and chloride channels, J. Mol. Evol., 1999, vol. 48, no. 2, pp. 187—196.

    Article  CAS  PubMed  Google Scholar 

  23. Zhu, S., Huys, I., Dyason, K., et al., Evolutionary trace analysis of scorpion toxins specific for K-channels, Proteins, 2004, vol. 54, no. 2, pp. 361—370.

    Article  CAS  PubMed  Google Scholar 

  24. Zhijian, C., Feng, L., and Yingliang, W., et al., Genetic mechanisms of scorpion venom peptide diversification, Toxicon, 2006, vol. 47, no. 3, pp. 348—355.

    Article  PubMed  Google Scholar 

  25. Zeng, X.C., Zhang, L., Nie, Y., et al., Identification and molecular characterization of three new K+-channel specific toxins from the Chinese scorpion Mesobuthus martensii Karsch revealing intronic number polymorphism and alternative splicing in duplicated genes, Peptides, 2012, vol. 34, no. 2, pp. 311—323.

    Article  CAS  PubMed  Google Scholar 

  26. Mu, Y., Zhou, X., Liu, L., et al., Pseudominobacter arsenicus sp. nov., an arsenic-resistant bacterium isolated from arsenic-rich aquifers, Int. J. Syst. Evol. Microbiol., 2019, vol. 69, no. 3, pp. 791—797.

    Article  CAS  PubMed  Google Scholar 

  27. Schweitz, H., Bruhn, T., Guillemare, E., et al., Two different classes of sea anemone toxins for voltage sensitive K+ channels, J. Biol. Chem., 1995, vol. 270, no. 42, pp. 25121—25126.

    Article  CAS  PubMed  Google Scholar 

  28. Angsanakul, J. and Sitprija, V., Scorpion venoms, kidney and potassium, Toxicon, 2013, vol. 73, pp. 81—87.

    Article  CAS  PubMed  Google Scholar 

  29. Rodríguez de la Vega, R.C. and Possani, L.D., Current views on scorpion toxins specific for K+-channels, Toxicon, 2004, vol. 43, no. 8, pp. 865—875.

    Article  PubMed  Google Scholar 

  30. Zhao, Y., Chen, Z., Cao, Z., et al., Diverse structural features of potassium channels characterized by scorpion toxins as molecular probes, Molecules, 2019, vol. 24, no. 11, p. 2045.

    Article  CAS  PubMed Central  Google Scholar 

  31. Meng, L., Xie, Z., Zhang, Q., et al., Scorpion potassium channel-blocking defensin highlights a functional link with neurotoxin, J. Biol. Chem., 2016, vol. 291, no. 13, pp. 7097—7106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jansa, S.A. and Voss, R.S., Adaptive evolution of the venom-targeted vWF protein in opossums that eat pitvipers, PLoS One, 2011, vol. 6, no. 6. e20997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Fishman, L., Herrmann, R., Gordon, D., et al., Insect tolerance to a neurotoxic polypeptide: pharmacokinetic and pharmacodynamic aspects, J. Exp. Biol., 1997, vol. 200, part 7, pp. 1115—1123.

    Article  CAS  PubMed  Google Scholar 

  34. Rowe, A.H. and Rowe, M.P., Physiological resistance of grasshopper mice (Onychomys spp.) to Arizona bark scorpion (Centruroides exilicauda) venom, Toxicon, 2008, vol. 52, no. 5, pp. 597—605.

    Article  CAS  PubMed  Google Scholar 

  35. Mawdsley, N. and Stork, N., Species extinctions in insects: ecological and biogeographical considerations, in Insects in a Changing Environment, London: Academic, 1995, pp. 321—369.

    Google Scholar 

  36. Samways, M.J., Insect conservation: a synthetic management approach, Annu. Rev. Entomol., 2007, vol. 52, pp. 465—487.

    Article  CAS  PubMed  Google Scholar 

  37. Barlow, A., Pook, C.E., Harrison, R.A., et al., Coevolution of diet and prey-specific venom activity supports the role of selection in snake venom evolution, Proc. Biol. Sci., 2009, vol. 276, no. 1666, pp. 2443—2449.

  38. Voss, R.S. and Jansa, S.A., Snake-venom resistance as a mammalian trophic adaptation: lessons from didelphid marsupials, Biol. Rev. Camb. Philos. Soc., 2012, vol. 87, no. 4, pp. 822—837.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

X.C.Z was responsible for research designing, provided all the materials, equipment and tools; X.C.Z and W.S wrote the manuscript; Y.W and L.Z conducted all the experiments and data analysis.

Corresponding authors

Correspondence to Xian-Chun Zeng or Wanxia Shi.

Ethics declarations

Conflict of interest. The authors declare that they have no conflicts of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Zhang, L., Zeng, XC. et al. Intronic Number Polymorphism in the Genes Encoding Potassium Channel Specific Venom Toxins from Scorpion. Russ J Genet 58, 1401–1408 (2022). https://doi.org/10.1134/S1022795422110126

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795422110126

Keywords:

Navigation