Skip to main content
Log in

Alternative Splicing Landscape of Placental Decidual Cells during Physiological Pregnancy

  • HUMAN GENETICS
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Alternative splicing (AS) of RNA is a key step in the post-transcriptional regulation of gene expression. It provides transcriptional plasticity and control of the expression of RNA isoforms in a certain type of tissues and cells at a given time. Presumably, this mechanism plays an important role in the development and functioning of the placenta. The study carried out deep whole-transcriptome sequencing with a detailed analysis of alternative splicing events in decidual cells (DC) of placental tissue during the physiological course of pregnancy. In decidual cells, 149 067 AS events annotated in GENCODE v.26 were identified in 20 463 genes; 4038 of these genes were characterized by ten or more isoforms. Analysis of the network of reconstructed genes demonstrated a high degree of interactions between alternatively spliced genes and revealed regulatory relationships that ensure the coordinated expression of most of the central genes associated with the initiation and elongation of translation in eukaryotes and modulation of angiogenesis and cell adhesion mediated by DE-cadherin. The results obtained confirm the importance of alternative splicing, which significantly increases transcriptional diversity and represents an important mechanism of gene regulation in decidual cells. It should be noted that a number of genes susceptible to AS in DC are associated with pregnancy complications, and therefore it seems relevant to further study this mechanism of RNA processing in a cohort of patients with obstetric pathology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Pan, Q., Shai, O., Lee, L.J., et al., Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing, Nat. Genet., 2008, vol. 40, no. 12, pp. 1413—1415. https://doi.org/10.1038/ng.259

    Article  CAS  PubMed  Google Scholar 

  2. Wang, E.T., Sandberg, R., Luo, S., et al., Alternative isoform regulation in human tissue transcriptomes, Nature, 2008, vol. 456, no. 7221, pp. 470—476. https://doi.org/10.1038/nature07509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wang, G.S. and Cooper, T.A., Splicing in disease: disruption of the splicing code and the decoding machinery, Nat. Rev. Genet., 2007, vol. 8, no. 10, pp. 749—761. https://doi.org/10.1038/nrg2164

    Article  CAS  PubMed  Google Scholar 

  4. Raj, T., Li, Y.I., Wong, G., et al., Integrative transcriptome analyses of the aging brain implicate altered splicing in Alzheimer’s disease susceptibility, Nat. Genet., 2018, vol. 50, no. 11, pp. 1584—1592. https://doi.org/10.1038/s41588-018-0238-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tejedor, J.R., Tilgner, H., Iannone, C., et al., Role of six single nucleotide polymorphisms, risk factors in coronary disease, in OLR1 alternative splicing, RNA, 2015, vol. 6, pp. 1187—1202. https://doi.org/10.1261/rna.049890

    Article  Google Scholar 

  6. Kahles, A., Lehmann, K., Toussaint, N.C., et al., Comprehensive analysis of alternative splicing across tumors from 8705 patients, Cancer Cell, 2018, vol. 34, no. 2, pp. 211—224. https://doi.org/10.1016/j.ccell.2018.07.001

    Article  CAS  PubMed  Google Scholar 

  7. Takata, A., Matsumoto, N., and Kato, T., Genome-wide identification of splicing QTLs in the human brain and their enrichment among schizophrenia-associated loci, Nat. Commun., 2017, vol. 8, p. 14519. https://doi.org/10.1038/ncomms14519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ruano, C.S.M., Apicella, C., Jacques, S., et al., Alternative splicing in normal and pathological human placentas is correlated to genetic variants, Hum. Genet., 2021, vol. 140, no. 5, pp. 827—848. https://doi.org/10.1007/s00439-020-02248-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Schatz, F., Guzeloglu-Kayisli, O., Arlier, S., et al., The role of decidual cells in uterine hemostasis, menstruation, inflammation, adverse pregnancy outcomes and abnormal uterine bleeding, Hum. Reprod. Update, 2016, vol. 4, pp. 497—515. https://doi.org/10.1093/humupd/dmw004

    Article  CAS  Google Scholar 

  10. Brighton, P.J., Maruyama, Y., Fishwick, K., et al., Clearance of senescent decidual cells by uterine natural killer cells in cycling human endometrium, eLife, 2017, vol. 6. e31274. https://doi.org/10.7554/eLife.31274

    Article  PubMed  PubMed Central  Google Scholar 

  11. Robson, S.C., Simpson, H., Ball, E., et al., Punch biopsy of the human placental bed, Am. J. Obstet. Gynecol., 2002, vol. 187, no. 5, pp. 1349—1355. https://doi.org/10.1067/mob.2002.126866

    Article  PubMed  Google Scholar 

  12. WEB-based GEne SeT AnaLysis Toolkit. http://www.webgestalt.org/. Accessed April, 2022.

  13. Szklarczyk, D., Gable, A.L., Lyon, D., et al., STRING v11: protein—protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets, Nucleic Acids Res., 2019, vol. 47, no. D1, pp. D607—D613. https://doi.org/10.1093/nar/gky1131

    Article  CAS  PubMed  Google Scholar 

  14. Goldstein, L.D., Ca, Y., Pau, G., et al., Prediction and quantification of splice events from RNA-seq data, PLoS One, 2016, vol. 11, no. 5. e0156132. https://doi.org/10.1371/journal.pone.0156132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Knöfler, M. and Pollheimer, J., Human placental trophoblast invasion and differentiation: a particular focus on Wnt signaling, Front. Genet., 2013, vol. 4, p. 190. https://doi.org/10.3389/fgene.2013.00190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sonderegger, S., Pollheimer, J., and Knöfler, M., Wnt signalling in implantation, decidualisation and placental differentiation—review, Placenta, 2010, vol. 31, no. 10, pp. 839—847. https://doi.org/10.1016/j.placenta.2010.07.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bao, H., Liu, D., Xu, Y., et al., Hyperactivated Wnt-β-catenin signaling in the absence of sFRP1 and sFRP5 disrupts trophoblast differentiation through repression of Ascl2, BMC Biol., 2020, vol. 18, no. 1, pp. 1—14. https://doi.org/10.1186/s12915-020-00883-4

    Article  CAS  Google Scholar 

  18. Chronopoulou, E., Koika, V., Tsiveriotis, K., et al., Wnt4, Wnt6 and β-catenin expression in human placental tissue—is there a link with first trimester miscarriage? Results from a pilot study, Reprod. Biol. Endocrinol., 2022, vol. 20, no. 1, pp. 1—10. https://doi.org/10.1186/s12958-022-00923-4

    Article  CAS  Google Scholar 

  19. Xie, H., Tranguch, S., Jia, X., et al., Inactivation of nuclear Wnt-beta-catenin signaling limits blastocyst competency for implantation, Development, 2008, vol. 135, no. 4, pp. 717—727. https://doi.org/10.1242/dev.015339

    Article  CAS  PubMed  Google Scholar 

  20. Zeng, X., Zhang, Y., Xu, H., et al., Secreted frizzled related protein 2 modulates epithelial–mesenchymal transition and stemness via Wnt/β-catenin signaling in choriocarcinoma, Cell. Physiol. Biochem., 2018, vol. 50, no. 5, pp. 1815—1831. https://doi.org/10.1159/000494862

    Article  CAS  PubMed  Google Scholar 

  21. Pollheimer, J., Loregger, T., Sonderegger, S., et al., Activation of the canonical wingless/T-cell factor signaling pathway promotes invasive differentiation of human trophoblast, Am. J. Pathol., 2006, vol. 168, no. 4, pp. 1134—1147. https://doi.org/10.2353/ajpath.2006.050686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chen, Y., Zhang, Y., Deng, Q., et al., Wnt5a inhibited human trophoblast cell line HTR8/SVneo invasion: implications for early placentation and preeclampsia, J. Matern.-Fetal Neonat. Med., 2016, vol. 29, no. 21, pp. 3532—3538. https://doi.org/10.3109/14767058.2016.1138102

    Article  CAS  Google Scholar 

  23. Wang, G., Zhang, Z., Chen, C., et al., Dysfunction of WNT4/WNT5A in deciduas: possible relevance to the pathogenesis of preeclampsia, J. Hypertens., 2016, vol. 34, no. 4, pp. 719—727. https://doi.org/10.1097/hjh.0000000000000851

    Article  CAS  PubMed  Google Scholar 

  24. Hess, A.P., Hamilton, A.E., Talbi, S., et al., Decidual stromal cell response to paracrine signals from the trophoblast: amplification of immune and angiogenic modulators, Biol. Reprod., 2007, vol. 76, no. 1, pp. 102—117. https://doi.org/10.1095/biolreprod.106.054791

    Article  CAS  PubMed  Google Scholar 

  25. Newman, A.C. and Hughes, C.C.W., Macrophages and angiogenesis: a role for Wnt signaling, Vasc. Cell, 2012, vol. 4, no. 1, pp. 1—7. https://doi.org/10.1186/2045-824X-4-13

    Article  Google Scholar 

  26. Yang, C., Iyer, R.R., Albert, C.H., et al., β-Catenin signaling initiates the activation of astrocytes and its dysregulation contributes to the pathogenesis of astrocytomas, Proc. Natl. Acad. Sci. U.S.A., 2012, vol. 109, no. 18, pp. 6963—6968. https://doi.org/10.1073/pnas.1118754109

    Article  PubMed  PubMed Central  Google Scholar 

  27. Watanabe, T., Nanamiya, H., Kojima, M., et al., Clinical relevance of oncogenic driver mutations identified in endometrial carcinoma, Translat. Oncol., 2021, vol. 14, no. 3, p. 101010. https://doi.org/10.1016/j.tranon.2021.101010

    Article  CAS  Google Scholar 

  28. Honest, H., Bachmann, L.M., Gupta, J.K., et al., Accuracy of cervicovaginal fetal fibronectin test in predicting risk of spontaneous preterm birth: systematic review, BMJ, 2002, vol. 325, no. 7359, p. 301. https://doi.org/10.1136/bmj.325.7359.301

    Article  PubMed  PubMed Central  Google Scholar 

  29. Bodova, K.B., Biringer, K., Dokus, K., et al., Fibronectin, plasminogen activator inhibitor type 1 (PAI-1) and uterine artery Doppler velocimetry as markers of preeclampsia, Dis. Markers, 2011, vol. 30, no. 4, pp. 191—196. https://doi.org/10.3233/DMA-2011-0772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Banadakoppa, M., Balakrishnan, M., and Yallampalli, C., Common variants of fetal and maternal complement genes in preeclampsia: pregnancy specific complotype, Sci. Rep., 2020, vol. 10, no. 1, pp. 1—9. https://doi.org/10.1038/s41598-020-60539-9

    Article  CAS  Google Scholar 

  31. Abdi-Shayan, S., Monfaredan, A., Moradi, Z., et al., Association of CD46 IVS1-1724 C>G single nucleotide polymorphism in Iranian women with unexplained recurrent spontaneous abortion (URSA), Iran. J. Allergy, Asthma Immunol., 2016, vol. 15, no. 4, pp. 303—308.

    Google Scholar 

  32. Louwen, F., Muschol-Steinmetz, C., Reinhard, J., et al., A lesson for cancer research: placental microarray gene analysis in preeclampsia, Oncotarget, 2012, vol. 3, no. 8, p. 759. https://doi.org/10.18632/oncotarget.595

    Article  PubMed  PubMed Central  Google Scholar 

  33. Smith, Z.D., Shi, J., Gu, H., et al., Epigenetic restriction of extraembryonic lineages mirrors the somatic transition to cancer, Nature, 2017, vol. 549, no. 7673, pp. 543—547. https://doi.org/10.1038/nature23891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Macaulay, E.C., Chatterjee, A., Cheng, X., et al., The genes of life and death: a potential role for placental-specific genes in cancer: active retrotransposons in the placenta encode unique functional genes that may also be used by cancer cells to promote malignancy, BioEssays, 2017, vol. 39, no. 11, p. 1700091. https://doi.org/10.1002/bies.201700091

    Article  CAS  Google Scholar 

  35. Afzal, J., Maziarz, J.D., Hamidzadeh, A., et al., Evolution of placental invasion and cancer metastasis are causally linked, Nat. Ecol. Evol., 2019, vol. 3, no. 12, pp. 1743—1753. https://doi.org/10.1038/s41559-019-1046-4

    Article  PubMed  PubMed Central  Google Scholar 

  36. Tatarskii, V.V., The Wnt signaling pathway: prospects for pharmacological regulation, Usp. Mol. Onkol., 2016, vol. 3, no. 1, pp. 28—31. https://doi.org/10.17650/2313-805X.2016.3.1.28-31

    Article  Google Scholar 

  37. Vishnyakova, P.A., Tarasova, N.V., Volodina, M.A., et al., Epithelial-mesenchymal transition in the placenta in preeclampsia, Akush. Ginekol., 2016, no. 12, pp. 53—57. https://doi.org/10.18565/aig.2016.12.53-7

  38. Sebestyén, E., Zawisza, M., and Eyras, E., Detection of recurrent alternative splicing switches in tumor samples reveals novel signatures of cancer, Nucleic Acids Res., 2015, vol. 43, no. 3, pp. 1345—1356. https://doi.org/10.1093/nar/gku1392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Martinez-Montiel, N., Rosas-Murrieta, N.H., Anaya Ruiz, M., et al., Alternative splicing as a target for cancer treatment, Int. J. Mol. Sci., 2018, vol. 19, no. 2, p. 545. https://doi.org/10.3390/ijms19020545

    Article  CAS  PubMed Central  Google Scholar 

  40. Will, C.L. and Lührmann, R., Spliceosome structure and function, Cold Spring Harbor Perspect. Biol., 2011, vol. 3, no. 7, p. a003707. https://doi.org/10.1101/cshperspect.a003707

    Article  CAS  Google Scholar 

Download references

Funding

The study was financially supported by the Russian Foundation for Basic Research (project no. 20-34-90128).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Trifonova.

Ethics declarations

Conflict of interest. The authors declare that they have no conflicts of interest.

Statement of compliance with standards of research involving humans as subjects. All procedures performed in a study involving people comply with the ethical standards of the institutional and/or national committee for research ethics and the 1964 Helsinki Declaration and its subsequent changes or comparable ethical standards.

Informed voluntary consent was obtained from each of the participants.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trifonova, E.A., Gavrilenko, M.M., Babovskaya, A.A. et al. Alternative Splicing Landscape of Placental Decidual Cells during Physiological Pregnancy. Russ J Genet 58, 1257–1265 (2022). https://doi.org/10.1134/S1022795422100106

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795422100106

Keywords:

Navigation