Skip to main content
Log in

The Role of Splicing in the Pathogenesis of Monogenic Diseases

  • REVIEWS AND THEORETICAL ARTICLES
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Despite the development of exome and whole genome sequencing technologies and their routine use in the diagnosis of hereditary diseases, the efficiency of detection of pathogenic genetic variants for methods based on DNA analysis is less than 50%. One of the main reasons may be the inefficiency of these approaches in the search for genetic variants responsible for impaired pre-mRNA splicing. This review discusses the results of work on the search for splicing abnormalities in hereditary orphan diseases using RNA sequencing and the possibility of clinical application of this method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. https://www.orpha.net/.

  2. Nguengang Wakap, S., Lambert, D.M., Olry, A., et al., Estimating cumulative point prevalence of rare diseases: analysis of the Orphanet database, Eur. J. Hum. Genet., 2020, vol. 28, no. 2, pp. 165—173. https://doi.org/10.1038/s41431-019-0508-0

    Article  PubMed  Google Scholar 

  3. Online Mendelian Inheritance in Man. https://www.omim.org/.

  4. Choi, M., Scholl, U.I., Ji, W., et al., Genetic diagnosis by whole exome capture and massively parallel DNA sequencing, Proc. Natl. Acad. Sci. U.S.A., 2009, vol. 106, no. 45, pp. 19096—19101. https://doi.org/10.1073/pnas.0910672106

    Article  PubMed  PubMed Central  Google Scholar 

  5. Valencia, C.A., Husami, A., Holle, J., et al., Clinical impact and cost-effectiveness of whole exome sequencing as a diagnostic tool: a pediatric center’s experience, Front. Pediatr., 2015, vol. 3. https://doi.org/10.3389/fped.2015.00067

  6. Tan, T.Y., Dillon, O.J., Stark, Z., et al., Diagnostic impact and cost-effectiveness of whole-exome sequencing for ambulant children with suspected monogenic conditions, JAMA Pediatr., 2017, vol. 171, no. 9, p. 855. https://doi.org/10.1001/jamapediatrics.2017.1755

    Article  PubMed  PubMed Central  Google Scholar 

  7. Retterer, K., Juusola, J., Cho, M.T., et al., Clinical application of whole-exome sequencing across clinical indications, Genet. Med., 2016, vol. 18, no. 7, pp. 696—704. https://doi.org/10.1038/gim.2015.148

    Article  CAS  PubMed  Google Scholar 

  8. Lionel, A.C., Costain, G., Monfared, N., et al., Improved diagnostic yield compared with targeted gene sequencing panels suggests a role for whole-genome sequencing as a first-tier genetic test, Genet. Med., 2018, vol. 20, no. 4, pp. 435—443. https://doi.org/10.1038/gim.2017.119

    Article  CAS  PubMed  Google Scholar 

  9. Schwarze, K., Buchanan, J., Taylor, J.C., et al., Are whole-exome and whole-genome sequencing approaches cost-effective? A systematic review of the literature, Genet. Med., 2018, vol. 20, no. 10, pp. 1122—1130. https://doi.org/10.1038/gim.2017.247

    Article  PubMed  Google Scholar 

  10. Robertson, A.J., Tan, N.B., Spurdle, A.B., et al., Reanalysis of genomic data: an overview of the mechanisms and complexities of clinical adoption, Genet. Med., 2022, vol. 24, no. 4, pp. 798—810. https://doi.org/10.1016/j.gim.2021.12.011

    Article  PubMed  Google Scholar 

  11. Liu, P., Meng, L., Normand, E.A., et al., Reanalysis of clinical exome sequencing data, N. Engl. J. Med., 2019, vol. 380, no. 25, pp. 2478—2480. https://doi.org/10.1056/NEJMc1812033

    Article  PubMed  PubMed Central  Google Scholar 

  12. Tan, N.B., Stapleton, R., Stark, Z., et al., Evaluating systematic reanalysis of clinical genomic data in rare disease from single center experience and literature review, Mol. Genet. Genomic Med., 2020, vol. 8, no. 11, pp. 1—19. https://doi.org/10.1002/mgg3.1508

    Article  Google Scholar 

  13. Stenson, P.D., Mort, M., Ball, E.V., et al., The Human Gene Mutation Database: towards a comprehensive repository of inherited mutation data for medical research, genetic diagnosis and next-generation sequencing studies, Hum. Genet., 2017, vol. 136, no. 6, pp. 665—677. https://doi.org/10.1007/s00439-017-1779-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. López-Bigas, N., Audit, B., Ouzounis, C., et al., Are splicing mutations the most frequent cause of hereditary disease?, FEBS Lett., 2005, vol. 579, no. 9, pp. 1900—1903. https://doi.org/10.1016/j.febslet.2005.02.047

    Article  CAS  PubMed  Google Scholar 

  15. Jiang, W. and Chen, L., Alternative splicing: human disease and quantitative analysis from high-throughput sequencing, Comput. Struct. Biotechnol. J., 2021, vol. 19, pp. 183—195. https://doi.org/10.1016/j.csbj.2020.12.009

    Article  CAS  PubMed  Google Scholar 

  16. Kalsotra, A. and Cooper, T.A., Functional consequences of developmentally regulated alternative splicing, Nat. Rev. Genet., 2011, vol. 12, no. 10, pp. 715—729. https://doi.org/10.1038/nrg3052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Marco-Puche, G., Lois, S., Benítez, J., et al., RNA-seq perspectives to improve clinical diagnosis, Front. Genet., 2019, vol. 10. https://doi.org/10.3389/fgene.2019.01152

  18. Scotti, M.M. and Swanson, M.S., RNA mis-splicing in disease, Nat. Rev. Genet., 2016, vol. 17, no. 1, pp. 19—32. https://doi.org/10.1038/nrg.2015.3

    Article  CAS  PubMed  Google Scholar 

  19. Wu, Z.-H., Tang, Y., and Zhou, Y., Alternative splicing events implicated in carcinogenesis and prognosis of thyroid gland cancer, Sci. Rep., 2021, vol. 11, no. 1, p. 4841. https://doi.org/10.1038/s41598-021-84403-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Marin, J.J.G., Reviejo, M., Soto, M., et al., Impact of alternative splicing variants on liver cancer biology, Cancers (Basel), 2022, vol. 14, no. 1, p. 18. https://doi.org/10.3390/cancers14010018

    Article  CAS  Google Scholar 

  21. Kim, B.-H., Woo, T.-G., Kang, S.-M., et al., Splicing variants, protein—protein interactions, and drug targeting in Hutchinson—Gilford progeria syndrome and small cell lung cancer, Genes (Basel), 2022, vol. 13, no. 2, p. 165. https://doi.org/10.3390/genes13020165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wachs, A.S. and Bohne, J., Two sides of the same medal: noncoding mutations reveal new pathological mechanisms and insights into the regulation of gene expression, WIREs RNA, 2021, vol. 12, no. 1, pp. 1—21. https://doi.org/10.1002/wrna.1616

    Article  CAS  Google Scholar 

  23. Anna, A. and Monika, G., Splicing mutations in human genetic disorders: examples, detection, and confirmation, J. Appl. Genet., 2018, vol. 59, no. 3, pp. 253—268. https://doi.org/10.1007/s13353-018-0444-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Habara, Y., Takeshima, Y., Awano, H., et al., In vitro splicing analysis showed that availability of a cryptic splice site is not a determinant for alternative splicing patterns caused by +1G>A mutations in introns of the dystrophin gene, J. Med. Genet., 2009, vol. 46, no. 8, pp. 542—547. https://doi.org/10.1136/jmg.2008.061259

    Article  CAS  PubMed  Google Scholar 

  25. Sanz, D.J., Hollywood, J.A., Scallan, M.F., et al., Cas9/gRNA targeted excision of cystic fibrosis-causing deep-intronic splicing mutations restores normal splicing of CFTR mRNA, PLoS One, 2017, vol. 12, no. 9, p. e0184009. https://doi.org/10.1371/journal.pone.0184009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Symoens, S., Malfait, F., Vlummens, P., et al., A novel splice variant in the n-propeptide of COL5A1 causes an eds phenotype with severe kyphoscoliosis and eye involvement, PLoS One, 2011, vol. 6, no. 5. e20121. https://doi.org/10.1371/journal.pone.0020121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Weisschuh, N., Buena-Atienza, E., and Wissinger, B., Splicing mutations in inherited retinal diseases, Prog. Retin. Eye Res., 2021, vol. 80, p. 100874. https://doi.org/10.1016/j.preteyeres.2020.100874

    Article  CAS  PubMed  Google Scholar 

  28. Chen, M. and Manley, J.L., Mechanisms of alternative splicing regulation: insights from molecular and genomics approaches, Nat. Rev. Mol. Cell Biol., 2009, vol. 10, no. 11, pp. 741—754. https://doi.org/10.1038/nrm2777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Xiong, H.Y., Alipanahi, B., Lee, L.J., et al., The human splicing code reveals new insights into the genetic determinants of disease, Science, 2015, vol. 347, no. 6218. https://doi.org/10.1126/science.1254806

  30. Cummings, B.B., Marshall, J.L., Tukiainen, T., et al., Improving genetic diagnosis in Mendelian disease with transcriptome sequencing Genotype—Tissue Expression Consortium, Sci. Transl. Med., 2017, vol. 9, no. 386. https://doi.org/10.1126/scitranslmed.aal5209

  31. Gonorazky, H.D., Naumenko, S., Ramani, A.K., et al., Expanding the boundaries of RNA sequencing as a diagnostic tool for rare Mendelian disease, Am. J. Hum. Genet., 2019, vol. 104, no. 3, pp. 466—483. https://doi.org/10.1016/j.ajhg.2019.01.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Murdock, D.R., Dai, H., Burrage, L.C., et al., Transcriptome-directed analysis for Mendelian disease diagnosis overcomes limitations of conventional genomic testing, J. Clin. Invest., 2021, vol. 131, no. 1. https://doi.org/10.1172/jci141500

  33. Maddirevula, S., Kuwahara, H., Ewida, N., et al., Analysis of transcript-deleterious variants in Mendelian disorders: implications for RNA-based diagnostics, Genome Biol., 2020, vol. 21, no. 1, p. 145. https://doi.org/10.1186/s13059-020-02053-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lee, H., Huang, A.Y., Wang, L., et al., Diagnostic utility of transcriptome sequencing for rare Mendelian diseases, Genet. Med., 2020, vol. 22, no. 3, pp. 490—499. https://doi.org/10.1038/s41436-019-0672-1

    Article  CAS  PubMed  Google Scholar 

  35. Wai, H.A., Lord, J., Lyon, M., et al., Blood RNA analysis can increase clinical diagnostic rate and resolve variants of uncertain significance, Genet. Med., 2020, vol. 22, no. 6, pp. 1005—1014. https://doi.org/10.1038/s41436-020-0766-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Frésard, L., Smail, C., Ferraro, N.M., et al., Identification of rare-disease genes using blood transcriptome sequencing and large control cohorts, Nat. Med., 2019, vol. 25, no. 6, pp. 911—919. https://doi.org/10.1038/s41591-019-0457-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jaganathan, K., Kyriazopoulou Panagiotopoulou, S., McRae, J.F., et al., Predicting splicing from primary sequence with deep learning, Cell, 2019, vol. 176, no. 3, pp. 535—548. e24. https://doi.org/10.1016/j.cell.2018.12.015

  38. Cooper, T.A., Use of minigene systems to dissect alternative splicing elements, Methods, 2005, vol. 37, no. 4, pp. 331—340. https://doi.org/10.1016/j.ymeth.2005.07.015

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation (Federal Scientific and Technical Program for the Development of Genetic Technologies for 2019–2027, agreement no. 075-15-2021-1061, RF 193021X0029).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Skryabin.

Ethics declarations

The authors declare that they have no conflicts of interest.

This article does not contain any studies involving animals or human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skryabin, N.A., Zhigalina, D.I. & Stepanov, V.A. The Role of Splicing in the Pathogenesis of Monogenic Diseases. Russ J Genet 58, 1208–1215 (2022). https://doi.org/10.1134/S1022795422100088

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795422100088

Keywords:

Navigation