Skip to main content
Log in

Interloci CNV Interactions in Variability of the Phenotypes of Neurodevelopmental Disorders

  • REVIEWS AND THEORETICAL ARTICLES
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Most copy number variations (CNV) of pathogenetic significance are associated with neurodevelopmental phenotypes and characterized by incomplete penetrance and variable expressivity. However, the nature of these phenomena has not yet been disclosed. As a result, this leads to the uncertainty of prognosis in families with affected children having a genetic variant associated with the disease that was, however, inherited from apparently healthy parents, which is a problem for genetic counseling in medicine. This review discusses the evidence for the contribution of interloci interaction between different CNVs to variability of clinical manifestations of neuropsychiatric and intellectual disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Riggs, E.R., Andersen, E.F., Cherry, A.M., et al., Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen), Genet. Med., 2020, vol. 22, no. 2, pp. 245—257. https://doi.org/10.1038/s41436-019-0686-8

    Article  PubMed  Google Scholar 

  2. Pös, O., Radvanszky, J., Buglyó, G., et al., DNA copy number variation: main characteristics, evolutionary significance, and pathological aspects, Biomed. J., 2021, vol. 44, no. 5, pp. 548—559. https://doi.org/10.1016/j.bj.2021.02.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hovhannisyan, G., Harutyunyan, T., Aroutiounian, R., et al., DNA copy number variations as markers of mutagenic impact, Int. J. Mol. Sci., 2019, vol. 20, no. 19, p. 4723. https://doi.org/10.3390/ijms20194723

    Article  CAS  PubMed Central  Google Scholar 

  4. Yang, X., Lee, W.P., Ye, K., and Lee, C., One reference genome is not enough, Genome Biol., 2019, vol. 20, no. 1, p. 104. https://doi.org/10.1186/s13059-019-1717-0

    Article  PubMed  PubMed Central  Google Scholar 

  5. Li, Y.R., Glessner, J.T., Coe, B.P., et al., Rare copy number variants in over 100 000 European ancestry subjects reveal multiple disease associations, Nat. Commun., 2020, vol. 11, no. 1, p. 255. https://doi.org/10.1038/s41467-019-13624-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Niarchou, M., Chawner, S.J.R.A., Doherty, J.L., et al., Psychiatric disorders in children with 16p11.2 deletion and duplication, Transl. Psychiatry, 2019, vol. 9, no. 1, p. 8. https://doi.org/10.1038/s41398-018-0339-8

    Article  PubMed  PubMed Central  Google Scholar 

  7. Wilfert, A.B., Sulovari, A., Turner, T.N., et al., Recurrent de novo mutations in neurodevelopmental disorders: properties and clinical implications, Genome Med., 2017, vol. 9, no. 1, p. 101. https://doi.org/10.1186/s13073-017-0498-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Owen, D., Bracher-Smith, M., Kendall, K.M., et al., Effects of pathogenic CNVs on physical traits in participants of the UK Biobank, BMC Genomics, 2018, vol. 19, no. 1, p. 867. https://doi.org/10.1186/s12864-018-5292-7

    Article  PubMed  PubMed Central  Google Scholar 

  9. Cardoso, A.R., Lopes-Marques, M., Silva, R.M., et al., Essential genetic findings in neurodevelopmental disorders, Hum. Genomics, 2019, vol. 13, no. 1, p. 31. https://doi.org/10.1186/s40246-019-0216-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Morris-Rosendahl, D.J. and Crocq, M.A., Neurodevelopmental disorders—the history and future of a diagnostic concept, Dialogues Clin. Neurosci., 2020, vol. 22, no. 1, pp. 65—72. https://doi.org/10.31887/DCNS.2020.22.1

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ismail, F.Y. and Shapiro, B.K., What are neurodevelopmental disorders?, Curr. Opin. Neurol., 2019, vol. 32, no. 4, pp. 611—616. https://doi.org/10.1097/WCO.0000000000000710

    Article  PubMed  Google Scholar 

  12. D’haene, E. and Vergult, S., Interpreting the impact of noncoding structural variation in neurodevelopmental disorders, Genet. Med., 2021, vol. 1, no. 34, pp. 34—46. https://doi.org/10.1038/s41436-020-00974-1

    Article  CAS  Google Scholar 

  13. Kashevarova, A.A. and Lebedev, I.N., Genomic architecture of human chromosomal diseases, Russ. J. Genet., 2016, vol. 52, no. 5, pp. 447—462. https://doi.org/10.1134/S1022795416040062

    Article  CAS  Google Scholar 

  14. Pizzo, L., Jensen, M., Polyak, A., et al., Rare variants in the genetic background modulate cognitive and developmental phenotypes in individuals carrying disease-associated variants, Genet. Med., 2019, vol. 21, no. 4, pp. 816—825. https://doi.org/10.1038/s41436-018-0266-3

    Article  CAS  PubMed  Google Scholar 

  15. Weiss, L.A., Shen, Y., Korn, J.M., et al., Association between microdeletion and microduplication at 16p11.2 and autism, N. Engl. J. Med., 2008, vol. 358, no. 7, pp. 667—675. https://doi.org/10.1056/NEJMoa075974

    Article  CAS  PubMed  Google Scholar 

  16. Zufferey, F., Sherr, E.H., Beckmann, N.D., et al., A 600 kb deletion syndrome at 16p11.2 leads to energy imbalance and neuropsychiatric disorders, J. Med. Genet., 2012, vol. 49, no. 10, pp. 660—668. https://doi.org/10.1136/jmedgenet-2012-101203

    Article  CAS  PubMed  Google Scholar 

  17. Mulle, J.G., The 3q29 deletion confers >40-fold increase in risk for schizophrenia, Mol. Psychiatry, 2015, vol. 20, no. 9, pp. 1028—1029. https://doi.org/10.1038/mp.2015.76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Helbig, I., Mefford, H.C., Sharp, A.J., et al., 15q13.3 microdeletions increase risk of idiopathic generalized epilepsy, Nat. Genet., 2009, vol. 41, no. 2, pp. 160—162. https://doi.org/10.1038/ng.292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rice, A.M. and McLysaght, A., Dosage sensitivity is a major determinant of human copy number variant pathogenicity, Nat. Commun., 2017, vol. 8, p. 14366. https://doi.org/10.1038/ncomms14366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Geschwind, D.H. and Flint, J., Genetics and genomics of psychiatric disease, Science, 2015, vol. 349, no. 6255, pp. 1489—1494. https://doi.org/10.1126/science.aaa8954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Falk, A., Heine, V.M., Harwood, A.J., et al., Modeling psychiatric disorders: from genomic findings to cellular phenotypes, Mol. Psychiatry, 2016, vol. 9, pp. 1167—1179. https://doi.org/10.1038/mp.2016.89

    Article  CAS  Google Scholar 

  22. Crawford, K., Bracher-Smith, M., Owen, D., et al., Medical consequences of pathogenic CNVs in adults: analysis of the UK Biobank, J. Med. Genet., 2019, vol. 56, no. 3, pp. 131—138. https://doi.org/10.1136/jmedgenet-2018-105477

    Article  CAS  PubMed  Google Scholar 

  23. Woodbury-Smith, M., Nicolson, R., Zarrei, M., et al., Variable phenotype expression in a family segregating microdeletion of the NRXN1 and MBD5 autism spectrum disorder susceptibility genes, NPJ Genom. Med., 2017, vol. 2, p. 17. https://doi.org/10.1038/s41525-017-0020-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kendall, K.M., Bracher-Smith, M., Fitzpatrick, H., et al., Cognitive performance and functional outcomes of carriers of pathogenic copy number variants: analysis of the UK Biobank, Br. J. Psychiatry, 2019, vol. 214, no. 5, pp. 297—304. https://doi.org/10.1192/bjp.2018.301

    Article  PubMed  PubMed Central  Google Scholar 

  25. Lupski, J.R., de Oca-Luna, R.M., Slaugenhaupt, S., et al., DNA duplication associated with Charcot–Marie–Tooth disease type 1A, Cell, 1991, vol. 66, no. 2, pp. 219—232. https://doi.org/10.1016/0092-8674(91)90613-4

    Article  CAS  PubMed  Google Scholar 

  26. Stankiewicz, P. and Lupski, J.R., Genome architecture, rearrangements and genomic disorders, Trends Genet., 2002, vol. 18, no. 2, pp. 74—82. https://doi.org/10.1016/S0168-9525(02)02592-1

    Article  CAS  PubMed  Google Scholar 

  27. Fellermann, K., Stange, D.E., Schaeffeler, E., et al., A chromosome 8 gene-cluster polymorphism with low human beta-defensin 2 gene copy number predisposes to Crohn disease of the colon, Am. J. Hum. Genet., 2006, vol. 79, no. 3, pp. 439—448. https://doi.org/10.1086/505915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lupski, J.R., Genomic disorders: structural features of the genome can lead to DNA rearrangements and human disease traits, Trends Genet., 1998, vol. 14, no. 10, pp. 417—422. https://doi.org/10.1016/S0168-9525(98)01555-8

    Article  CAS  PubMed  Google Scholar 

  29. Shaffer, L.G. and Lupski, J.R., Molecular mechanisms for constitutional chromosomal rearrangements in humans, Annu. Rev. Genet., 2000, vol. 34, pp. 297—329. https://doi.org/10.1146/annurev.genet.34.1.297

    Article  CAS  PubMed  Google Scholar 

  30. Konrad, M., Saunier, S., Heidet, L., et al., Large homozygous deletions of the 2q13 region are a major cause of juvenile nephronophthisis, Hum. Mol. Genet., 1996, vol. 5, no. 3, pp. 367—371. https://doi.org/10.1093/hmg/5.3.367

    Article  CAS  PubMed  Google Scholar 

  31. Gitschier, J., Wood, W.I., Tuddenham, E.G., et al., Detection and sequence of mutations in the factor VIII gene of haemophiliacs, Nature, 1985, vol. 315, no. 6018, pp. 427—430. https://doi.org/10.1038/315427a0

    Article  CAS  PubMed  Google Scholar 

  32. Kuroda-Kawaguchi, T., Skaletsky, H., Brown, L.G., et al., The AZFc region of the Y chromosome features massive palindromes and uniform recurrent deletions in infertile men, Nat. Genet., 2001, vol. 29, no. 3, pp. 279—286. https://doi.org/10.1038/ng757

    Article  CAS  PubMed  Google Scholar 

  33. Brook, J.D., McCurrach, M.E., Harley, H.G., et al., Molecular basis of myotonic dystrophy: expansion of a trinucleotide (CTG) repeat at the 3' end of a transcript encoding a protein kinase family member, Cell, 1992, vol. 68, no. 4, pp. 799—808. https://doi.org/10.1016/0092-8674(92)90154-5

    Article  CAS  PubMed  Google Scholar 

  34. Radvanszky, J., Surovy, M., Polak, E., and Kadasi, L., Uninterrupted CCTG tracts in the myotonic dystrophy type 2 associated locus, Neuromuscul. Disord., 2013, vol. 23, no. 7, pp. 591—598. https://doi.org/10.1016/j.nmd.2013.02.013

    Article  PubMed  Google Scholar 

  35. Boone, P.M., Campbell, I.M., Baggett, B.C., et al., Deletions of recessive disease genes: CNV contribution to carrier states and disease-causing alleles, Genome Res., 2013, vol. 23, no. 9, pp. 1383—1394. https://doi.org/10.1101/gr.156075.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chen, D.H., Naydenov, A., Blankman, J.L., et al., Two novel mutations in ABHD12: expansion of the mutation spectrum in PHARC and assessment of their functional effects, Hum. Mutat., 2013, vol. 34, no. 12, pp. 1672—1678. https://doi.org/10.1002/humu.22437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Parvari, R., Brodyansky, I., Elpeleg, O., et al., A recessive contiguous gene deletion of chromosome 2p16 associated with cystinuria and a mitochondrial disease, Am. J. Hum. Genet., 2001, vol. 69, no. 4, pp. 869—875. https://doi.org/10.1086/323624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Harel, T., Yoon, W.H., Garone, C., et al., Recurrent de novo and biallelic variation of ATAD3A, encoding a mitochondrial membrane protein, results in distinct neurological syndromes, Am. J. Hum. Genet., 2016, vol. 99, no. 4, pp. 831—845. https://doi.org/10.1016/j.ajhg.2016.08.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Potocki, L., Chen, K.S., Koeuth, T., et al., DNA rearrangements on both homologues of chromosome 17 in a mildly delayed individual with a family history of autosomal dominant carpal tunnel syndrome, Am. J. Hum. Genet., 1999, vol. 64, no. 2, pp. 471—478. https://doi.org/10.1086/302240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bi, W., Probst, F.J., Wiszniewska, J., et al., Co-occurrence of recurrent duplications of the DiGeorge syndrome region on both chromosome 22 homologues due to inherited and de novo events, J. Med. Genet., 2012, vol. 49, no. 11, pp. 681—688. https://doi.org/10.1136/jmedgenet-2012-101002

    Article  PubMed  Google Scholar 

  41. Pardiñas, A.F., Holmans, P., Pocklington, A.J., et al., Common schizophrenia alleles are enriched in mutation-intolerant genes and in regions under strong background selection, Nat. Genet., 2018, vol. 50, no. 3, pp. 381—389. https://doi.org/10.1038/s41588-018-0059-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Grove, J., Ripke, S., Als, T.D., et al., Identification of common genetic risk variants for autism spectrum disorder, Nat. Genet., 2019, vol. 51, no. 3, pp. 431—444. https://doi.org/10.1038/s41588-019-0344-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Satterstrom, F.K., Kosmicki, J.A., Wang, J., et al., Large-scale exome sequencing study implicates both developmental and functional changes in the neurobiology of autism, Cell, 2020, vol. 180, no. 3, pp. 568—584. e23. https://doi.org/10.1016/j.cell.2019.12.036

  44. Girirajan, S., Rosenfeld, J.A., Coe, B.P., et al., Phenotypic heterogeneity of genomic disorders and rare copy-number variants, N. Engl. J. Med., 2012, vol. 367, no. 14, pp. 1321—1331. https://doi.org/10.1056/NEJMoa1200395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Brás, A., Rodrigues, A.S., and Rueff, J., Copy number variations and constitutional chromothripsis (review), Biomed. Rep., 2020, vol. 13, no. 3, p. 11. https://doi.org/10.3892/br.2020.1318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Pebrel-Richard, C., Debost-Legrand, A., Eymard-Pierre, E., et al., An unusual clinical severity of 16p11.2 deletion syndrome caused by unmasked recessive mutation of CLN3, Eur. J. Hum. Genet., 2014, vol. 22, no. 3, pp. 369—373. https://doi.org/10.1038/ejhg.2013.141

    Article  CAS  PubMed  Google Scholar 

  47. Lindstrand, A., Davis, E.E., Carvalho, C.M., et al., Recurrent CNVs and SNVs at the NPHP1 locus contribute pathogenic alleles to Bardet—Biedl syndrome, Am. J. Hum. Genet., 2014, vol. 94, no. 5, pp. 745—754. https://doi.org/10.1016/j.ajhg.2014.03.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lindstrand, A., Frangakis, S., Carvalho, C.M., et al., Copy-number variation contributes to the mutational load of Bardet—Biedl syndrome, Am. J. Hum. Genet., 2016, vol. 99, no. 2, pp. 318—336. https://doi.org/10.1016/j.ajhg.2015.04.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gonzaga-Jauregui, C., Harel, T., Gambin, T., et al., Exome sequence analysis suggests that genetic burden contributes to phenotypic variability and complex neuropathy, Cell. Rep., 2015, vol. 12, no. 7, pp. 1169—1183. https://doi.org/10.1016/j.celrep.2015.07.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kirov, G., Rees, E., and Walters, J.T.R., The penetrance of copy number variations for schizophrenia and developmental delay, Biol. Psychiatry, 2014, vol. 75, no. 5, pp. 378—385. https://doi.org/10.1016/j.biopsych.2013.07.022

    Article  CAS  PubMed  Google Scholar 

  51. Huguet, G., Schramm, C., Douard, E., et al., Measuring and estimating the effect sizes of copy number variants on general intelligence in community-based samples, JAMA Psychiatry, 2018, vol. 75, no. 5, pp. 447—457. https://doi.org/10.1001/jamapsychiatry.2018.0039

    Article  PubMed  PubMed Central  Google Scholar 

  52. Cleynen, I., Engchuan, W., Hestand, M.S., et al., Genetic contributors to risk of schizophrenia in the presence of a 22q11.2 deletion, Mol. Psychiatry, 2021, vol. 26, no. 8, pp. 4496—4510. https://doi.org/10.1038/s41380-020-0654-3

    Article  CAS  PubMed  Google Scholar 

  53. Klaassen, P., Duijff, S., Swanenburg de Veye, H., et al., Explaining the variable penetrance of CNVs: parental intelligence modulates expression of intellectual impairment caused by the 22q11.2 deletion, Am. J. Med. Genet., Part B, 2016, vol. 171, no. 6, pp. 790—796. https://doi.org/10.1002/ajmg.b.32441

    Article  CAS  Google Scholar 

  54. Tansey, K.E., Rees, E., Linden, D.E., et al., Common alleles contribute to schizophrenia in CNV carriers, Mol. Psychiatry, 2016, vol. 21, no. 8, pp. 1085—1089. https://doi.org/10.1038/mp.2015.143

    Article  CAS  PubMed  Google Scholar 

  55. Bergen, S.E., Ploner, A., Howrigan, D., et al., Joint contributions of rare copy number variants and common SNPs to risk for schizophrenia, Am. J. Psychiatry, 2018, vol. 176, no. 1, pp. 29—35. https://doi.org/10.1176/appi.ajp.2018.17040467

    Article  PubMed  PubMed Central  Google Scholar 

  56. Davies, R.W., Fiksinski, A.M., Breetvelt, E.J., et al., Using common genetic variation to examine phenotypic expression and risk prediction in 22q11.2 deletion syndrome, Nat. Med., 2020, vol. 26, no. 12, pp. 1912—1918. https://doi.org/10.1038/s41591-020-1103-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Martin, J., O’Donovan, M.C., Thapar, A., et al., The relative contribution of common and rare genetic variants to ADHD, Transl. Psychiatry, 2015, vol. 5, no. 2. e506. https://doi.org/10.1038/tp.2015.5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Girirajan, S., Rosenfeld, J.A., Cooper, G.M., et al., A recurrent 16p12.1 microdeletion supports a two-hit model for severe developmental delay, Nat. Genet., 2010, vol. 42, no. 3, pp. 203—209. https://doi.org/10.1038/ng.534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kirov, G., Pocklington, A.J., Holmans, P., et al., De novo CNV analysis implicates specific abnormalities of postsynaptic signalling complexes in the pathogenesis of schizophrenia, Mol. Psychiatry, 2012, vol. 17, no. 2, pp. 142—153. https://doi.org/10.1038/mp.2011.154

    Article  CAS  PubMed  Google Scholar 

  60. Girirajan, S. and Eichler, E.E., Phenotypic variability and genetic susceptibility to genomic disorders, Hum. Mol. Genet., 2010, vol. 19, pp. R176—R187. https://doi.org/10.1093/hmg/ddq366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Servetti, M., Pisciotta, L., Tassano, E., et al., Neurodevelopmental disorders in patients with complex phenotypes and potential complex genetic basis involving non-coding genes and double CNVs, Front. Genet., 2021, vol. 12, p. 732002. https://doi.org/10.3389/fgene.2021.732002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ross, P.J., Zhang, W.B., Mok, R.S.F., et al., Synaptic dysfunction in human neurons with autism-associated deletions in PTCHD1-AS, Biol. Psychiatry, 2020, vol. 87, no. 2, pp. 139—149. https://doi.org/10.1016/j.biopsych.2019.07.014

    Article  CAS  PubMed  Google Scholar 

  63. Piluso, G., Monteleone, P., Galderisi, S., et al., Assessment of de novo copy-number variations in Italian patients with schizophrenia: detection of putative mutations involving regulatory enhancer elements, World J. Biol. Psychiatry, 2019, vol. 20, no. 2, pp. 126—136. https://doi.org/10.1080/15622975.2017.1395072

    Article  PubMed  Google Scholar 

  64. Alinejad-Rokny, H., Heng, J.I.T., and Forrest, A.R.R., Brain-enriched coding and long non-coding RNA genes are overrepresented in recurrent neurodevelopmental disorder CNVs, Cell Rep., 2020, vol. 33, no. 4, p. 108307. https://doi.org/10.1016/j.celrep.2020.108307

    Article  CAS  PubMed  Google Scholar 

  65. Lupiáñez, D.G., Kraft, K., Heinrich, V., et al., Disruptions of topological chromatin domains cause pathogenic rewiring of gene-enhancer interactions, Cell, 2015, vol. 161, no. 5, pp. 1012—1025. https://doi.org/10.1016/j.cell.2015.04.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Di Gregorio, E., Riberi, E., Belligni, E.F., et al., Copy number variants analysis in a cohort of isolated and syndromic developmental delay/intellectual disability reveals novel genomic disorders, position effects and candidate disease genes, Clin. Genet., 2017, vol. 92, no. 4, pp. 415—422. https://doi.org/10.1111/cge.13009

    Article  CAS  PubMed  Google Scholar 

  67. Melo, U.S., Schöpflin, R., Acuna-Hidalgo, R., et al., Hi-C identifies complex genomic rearrangements and TAD-shuffling in developmental diseases, Am. J. Hum. Genet., 2020, vol. 106, no. 6, pp. 872—884. https://doi.org/10.1016/j.ajhg.2020.04.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ordulu, Z., Kammin, T., Brand, H., et al., Structural chromosomal rearrangements require nucleotide-level resolution: lessons from next-generation sequencing in prenatal diagnosis, Am. J. Hum. Genet., 2016, vol. 99, no. 5, pp. 1015—1033. https://doi.org/10.1016/j.ajhg.2016.08.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zhang, F. and Lupski, J.R., Non-coding genetic variants in human disease, Hum. Mol. Genet., 2015, vol. 24, no. R1, pp. R102—R110. https://doi.org/10.1093/hmg/ddv259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Fernandez, B.A., Siegel-Bartelt, J., Herbrick, J.A., et al., Holoprosencephaly and cleidocranial dysplasia in a patient due to two position-effect mutations: case report and review of the literature, Clin. Genet., 2005, vol. 68, no. 4, pp. 349—359. https://doi.org/10.1111/j.1399-0004.2005.00498.x

    Article  CAS  PubMed  Google Scholar 

  71. Petit, F., Jourdain, A.S., Holder-Espinasse, M., et al., The disruption of a novel limb cis-regulatory element of SHH is associated with autosomal dominant preaxial polydactyly-hypertrichosis, Eur. J. Hum. Genet., 2016, vol. 24, no. 1, pp. 37—43. https://doi.org/10.1038/ejhg.2015.53

    Article  CAS  PubMed  Google Scholar 

  72. Benko, S., Fantes, J.A., Amiel, J., et al., Highly conserved non-coding elements on either side of SOX9 associated with Pierre Robin sequence, Nat. Genet., 2009, vol. 41, no. 3, pp. 359—364. https://doi.org/10.1038/ng.329

    Article  CAS  PubMed  Google Scholar 

  73. Cox, J.J., Willatt, L., Homfray, T., and Woods, C.G., A SOX9 duplication and familial 46,XX developmental testicular disorder, N. Engl. J. Med., 2011, vol. 364, no. 1, pp. 91—93. https://doi.org/10.1056/NEJMc1010311

    Article  CAS  PubMed  Google Scholar 

  74. Pop, R., Conz, C., Lindenberg, K.S., et al., Screening of the 1 Mb SOX9 5' control region by array CGH identifies a large deletion in a case of campomelic dysplasia with XY sex reversal, J. Med. Genet., 2004, vol. 41, no. 4. e47. https://doi.org/10.1136/jmg.2003.013185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Fukami, M., Naiki, Y., Muroya, K., et al., Rare pseudoautosomal copy-number variations involving SHOX and/or its flanking regions in individuals with and without short stature, J. Hum. Genet., 2015, vol. 60, no. 9, pp. 553—556. https://doi.org/10.1038/jhg.2015.53

    Article  CAS  PubMed  Google Scholar 

  76. Bunyan, D.J., Baffico, M., Capone, L., et al., Duplications upstream and downstream of SHOX identified as novel causes of Leri—Weill dyschondrosteosis or idiopathic short stature, Am. J. Med. Genet., Part A, 2016, vol. 170, no. 4, pp. 949—957.

    Article  CAS  Google Scholar 

  77. Schmitt, A.D., Hu, M., and Ren, B., Genome-wide mapping and analysis of chromosome architecture, Nat. Rev. Mol. Cell Biol., 2016, vol. 17, no. 12, pp. 743—755. https://doi.org/10.1038/nrm.2016.104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Dixon, J.R., Jung, I., Selvaraj, S., et al., Chromatin architecture reorganization during stem cell differentiation, Nature, 2015, vol. 518, no. 7539, pp. 331—336. https://doi.org/10.1038/nature14222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Bassett, A.S., Lowther, C., Merico, D., et al., International 22q11.2DS brain and behavior consortium: rare genome-wide copy number variation and expression of schizophrenia in 22q11.2 deletion syndrome, Am. J. Psychiatry, 2017, vol. 174, no. 11, pp. 1054—1063. https://doi.org/10.1176/appi.ajp.2017.16121417

    Article  PubMed  PubMed Central  Google Scholar 

  80. Michaelovsky, E., Carmel, M., Frisch, A., et al., Risk gene-set and pathways in 22q11.2 deletion-related schizophrenia: a genealogical molecular approach, Transl. Psychiatry, 2019, vol. 9, no. 1, p. 15. https://doi.org/10.1038/s41398-018-0354-9

    Article  PubMed  PubMed Central  Google Scholar 

  81. Cox, D.M. and Butler, M.G., The 15q11.2 BP1-BP2 microdeletion syndrome: a review, Int. J. Mol. Sci., 2015, vol. 16, no. 2, pp. 4068—4082. https://doi.org/10.3390/ijms16024068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Lal, D., Trucks, H., Møller, R.S., et al., Rare exonic deletions of the RBFOX1 gene increase risk of idiopathic generalized epilepsy, Epilepsia, 2013, vol. 54, no. 2, pp. 265—271. https://doi.org/10.1111/epi.12084

    Article  CAS  PubMed  Google Scholar 

  83. Bossi, S., Musante, I., Bonfiglio, T., et al., Genetic inactivation of mGlu5 receptor improves motor coordination in the Grm1crv4 mouse model of SCAR13 ataxia, Neurobiol. Dis., 2018, vol. 109, part A, pp. 44—53. https://doi.org/10.1016/j.nbd.2017.10.001

  84. Lim, J.S., Gopalappa, R., Kim, S.H., et al., Somatic mutations in TSC1 and TSC2 cause focal cortical dysplasia, Am. J. Hum. Genet., 2017, vol. 100, no. 3, pp. 454—472. https://doi.org/10.1016/j.ajhg.2017.01.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Lee, W.S., Stephenson, S.E.M., Howell, K.B., et al., Second-hit DEPDC5 mutation is limited to dysmorphic neurons in cortical dysplasia type IIA, Ann. Clin. Transl. Neurol., 2019, vol. 6, no. 7, pp. 1338—1344. https://doi.org/10.1002/acn3.50815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Baldassari, S., Ribierre, T., Marsan, E., et al., Dissecting the genetic basis of focal cortical dysplasia: a large cohort study, Acta Neuropathol., 2019, vol. 138, no. 6, pp. 885—900. https://doi.org/10.1007/s00401-019-02061-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Sim, N.S., Ko, A., Kim, W.K., et al., Precise detection of low-level somatic mutation in resected epilepsy brain tissue, Acta Neuropathol., 2019, vol. 138, no. 6, pp. 901—912. https://doi.org/10.1007/s00401-019-02052-6

    Article  CAS  PubMed  Google Scholar 

  88. Pelorosso, C., Watrin, F., Conti, V., et al., Somatic double-hit in MTOR and RPS6 in hemimegalencephaly with intractable epilepsy, Hum. Mol. Genet., 2019, vol. 28, no. 22, pp. 3755—3765. https://doi.org/10.1093/hmg/ddz194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Bennett, M.F., Hildebrand, M.S., Kayumi, S., et al., Evidence for a dual-pathway, 2-hit genetic model for focal cortical dysplasia and epilepsy, Neurol. Genet., 2022, vol. 8, no. 1. e652. https://doi.org/10.1212/NXG.0000000000000652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Ye, Z., McQuillan, L., Poduri, A., et al., Somatic mutation: the hidden genetics of brain malformations and focal epilepsies, Epilepsy Res., 2019, vol. 155, p. 106161. https://doi.org/10.1016/j.eplepsyres.2019.106161

    Article  CAS  PubMed  Google Scholar 

  91. Srivastava, S., Love-Nichols, J.A., Love-Nichols, J.A., et al., Meta-analysis and multidisciplinary consensus statement: exome sequencing is a first-tier clinical diagnostic test for individuals with neurodevelopmental disorders, Genet. Med., 2019, vol. 21, no. 11, pp. 2413—2421. https://doi.org/10.1038/s41436-019-0554-6

    Article  PubMed  PubMed Central  Google Scholar 

  92. Savatt, J.M. and Myers, S.M., Genetic testing in neurodevelopmental disorders, Front. Pediatr., 2021, vol. 19, no. 9, p. 526779. https://doi.org/10.3389/fped.2021.526779

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 21-75-00112, https://rscf.ru/project/21-75-00112/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. O. Belyaeva.

Ethics declarations

The authors declare they have no conflicts of interest.

This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by A. Lisenkova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belyaeva, E.O., Lebedev, I.N. Interloci CNV Interactions in Variability of the Phenotypes of Neurodevelopmental Disorders. Russ J Genet 58, 1169–1179 (2022). https://doi.org/10.1134/S1022795422100027

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795422100027

Keywords:

Navigation