Skip to main content
Log in

New Cattle Genotyping System Based on DNA Microarray Technology

  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

A prototyping model of the DNA microarray system for identification of genetic markers related to productivity, determination of cattle breed purity, and identification of cattle monogenic diseases was developed. A method for immobilizing oligonucleotides on a polymer support, their fixation using ultraviolet irradiation, and DNA hybridization to them, followed by labeling and genotype determination, was developed. Genotyping of two genes encoding milk caseins, i.e., CSN3 kappa-casein gene and CSN2 beta-casein gene, in the Aberdeen Angus breed using real-time PCR and the developed DNA microarray showed identical results. The potential of DNA microarray technology, its principle, and the possibilities of application to animal husbandry for genetic breeding work (monitoring, determining the genetic potential and diversity in breeds and populations of cattle, and agrobiodiversity in general) are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. Matukumalli, L.K., Lawley, C.T., Schnabel, R.D., et al., Development and characterization of a high density SNP genotyping assay for cattle, PLoS One, 2009, vol. 4, no. 4, e5350. https://doi.org/10.1371/journal.pone.0005350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kijas, J.W., Townley, D., Dalrymple, B.P., et al., A genome wide survey of SNP variation reveals the genetic structure of sheep breeds, PLoS One, 2009, vol. 4, no. 3, e4668. https://doi.org/10.1371/journal.pone.0004668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. McCue, M.E., Bannasch, D.L., Petersen, J.L., et al., A high density SNP array for the domestic horse and extant Perissodactyla: utility for association mapping, genetic diversity, and phylogeny studies, PLoS Genet., 2012, vol. 8, no. 1, e1002451. https://doi.org/10.1371/journal.pgen.1002451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Stolpovsky, Y.A., Piskunov, A.K., and Svishcheva, G.R., Genomic selection: I. Latest trends and possible ways of development, Russ. J. Genet., 2020, vol. 56, no. 9, pp. 1044–1054. https://doi.org/10.1134/S1022795420090148

    Article  CAS  Google Scholar 

  5. Stolpovsky, Y.A., Svishcheva, G.R., and Piskunov, A.K., Genomic selection: II. Latest trends and future trajectories, Russ. J. Genet., 2020, vol. 56, no. 10, pp. 1155–1161. https://doi.org/10.1134/S1022795420100129

    Article  CAS  Google Scholar 

  6. Boichard, D., Chung, H., Dassonneville, R., et al., Design of a bovine low-density SNP array optimized for imputation, PLoS One, 2012, vol. 7, no. 3, e34130. https://doi.org/10.1371/journal.pone.0034130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bolormaa, S., Gore, K., van der Werf, J.H.J., et al., Design of a low-density SNP chip for the main Australian sheep breeds and its effect on imputation and genomic prediction accuracy, Anim. Genet., 2015, vol. 46, no. 5, pp. 544–556. https://doi.org/10.1111/age.12340

    Article  CAS  PubMed  Google Scholar 

  8. Aliloo, H., Mrode, R., Okeyo, A.M., et al., The feasibility of using low-density marker panels for genotype imputation and genomic prediction of crossbred dairy cattle of East Africa, J. Dairy Sci., 2018, vol. 101, no. 10, pp. 9108–9127. https://doi.org/10.3168/jds.2018-14621

    Article  CAS  PubMed  Google Scholar 

  9. Shashkova, T.I., Martynova, E.U., Ayupova, A.F., et al., Development of a low-density panel for genomic selection of pigs in Russia, Transl. Nauka Zhivotn., 2020, vol. 4, no. 1, pp. 264–274. https://doi.org/10.1093/tas/txz182

    Article  CAS  Google Scholar 

  10. Reverter, A., Hudson, N.J., McWilliam, S., et al., A low-density SNP genotyping panel for the accurate prediction of cattle breeds, J. Anim. Sci., 2020, vol. 98, no. 11, p. skaa337. https://doi.org/10.1093/jas/skaa337

  11. Alexandre, P.A., Li, Y., Hine, B.C., et al., Bias, dispersion, and accuracy of genomic predictions for feedlot and carcass traits in Australian Angus steers, Genet. Sel. Evol., 2021, vol. 53, p. 77. https://doi.org/10.1186/s12711-021-00673-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Coffey, M., Dairy cows: in the age of the genotype, phenotypeisking, Anim. Front., 2020, vol. 10, no. 2, pp. 19–22. https://doi.org/10.1093/af/vfaa004

    Article  PubMed  PubMed Central  Google Scholar 

  13. Solodneva, E.V., Piskunov, A.K., Stolpovsky, Y.A., and Kuznetsov, S.B., Digital phenotyping technologies: an emerging tool in genomic selection and animal welfare science?, E3S Web Conf. EDP Sciences, 2021, vol. 285.https://doi.org/10.1051/e3sconf/202128504015.

  14. Sulimova, G.E., Sokolova, S.S., Semikozova, O.P., et al., Analysis of DNA polymorphisms of clustered genes in cattle: casein genes and genes of the major histocompatibility complex (BOLA), Tsitol. Genet., 1992, vol. 26, pp. 18–26.

    CAS  PubMed  Google Scholar 

  15. Tantia, M.S., Vijh, R.K., Mishra, B.P., et al., DGAT1 and ABCG2 polymorphism in Indian cattle (Bos indicus) and buffalo (Bubalus bubalis) breeds, BMC Vet. Res., 2006, vol. 2, no. 1, pp. 1–5. https://doi.org/10.1186/1746-6148-2-32

    Article  CAS  Google Scholar 

  16. Grisart, B., Farnir, F., Karim, L., et al., Genetic and functional confirmation of the causality of the DGAT1 K232A quantitative trait nucleotide in affecting milk yield and composition, Proc. Natl. Acad. Sci. U.S.A., 2004, vol. 101, no. 8, pp. 2398–2403. https://doi.org/10.1073/pnas.0308518100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mohammadabadi, M.R., Torabi, A., Tahmourespoor, M., et al., Analysis of bovine growth hormone gene polymorphism of local and Holstein cattle breeds in Kerman province of Iran using polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP), Afr. J. Biotechnol., 2010, vol. 9, no. 41, pp. 6848–6852. https://doi.org/10.5897/AJB10.799

    Article  CAS  Google Scholar 

  18. Moravcikova, N., Trakovicka, A., Hazuchova, E., and Bujko, J., Associations between polymorphisms in the leptin gene and milk production traits in Pinzgau and Slovak Spotted cattle, Acta Agric. Slov., 2012, vol. 100, suppl. 3, pp. 259–263.

    Google Scholar 

  19. Akad, I.A.Ş., Mengi, A., and Öztabak, K.Ö., A determination of growth hormone receptor gene polymorphisms in East Anatolian Red cattle, South Anatolian Red cattle, and Turkish Grey cattle, Turk. J. Vet. Anim. Sci., 2012, vol. 36, no. 1, pp. 27–33.

    CAS  Google Scholar 

  20. Kanae, Yu., Endoh, D., Nagahata, H., et al., A method for detecting complex vertebral malformation in Holstein calves using polymerase chain reaction—primer-introduced restriction analysis, J. Vet. Diagn. Invest., 2005, vol. 17, no. 3, pp. 258–262. https://doi.org/10.1177/104063870501700309

    Article  PubMed  Google Scholar 

  21. Thomsen, B., Horn, P., Panitz, F., et al., A missense mutation in the bovine SLC35A3 gene, encoding a UDP-N-acetylglucosamine transporter, causes complex vertebral malformation, Genome Res., 2006, vol. 16, no. 1, pp. 97–105. https://doi.org/10.1101/gr.3690506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kiiko, E., Kurguzkin, V., Samorukov, Yu., and Marzanov, N., Assessment of sire allele pools for kappa-casein and BLAD-syndrome, Vet. Patol., 2008, no. 3, pp. 38–40.

  23. Barendse, W., Bunch, R.J., Kijas, J.W., and Thomas, M.B., The effect of genetic variation of the retinoic acid receptor-related orphan receptor C gene on fatness in cattle, Genetics, 2007, vol. 175, no. 2, pp. 843–853. https://doi.org/10.1534/genetics.106.064535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Matsuhashi, T., Maruyama, S., Uemoto, Y., et al., Effects of bovine fatty acid synthase, stearoyl-coenzyme A desaturase, sterol regulatory element-binding protein 1, and growth hormone gene polymorphisms on fatty acid composition and carcass traits in Japanese Black cattle, J. Anim. Sci., 2011, vol. 89, no. 1, pp. 12–22. https://doi.org/10.2527/jas.2010-3121

    Article  CAS  PubMed  Google Scholar 

  25. Tyul’kin, S.V., Nurgaliev, F.M., Akhmetov, T.M., and Vafin, R.R., Identification of the mstn and RyR1 gene mutations associated with animal meat productivity, Uch. Zap. Kazan. Gos. Akad. Vet. Med. im. N.E. Baumana, 2012, vol. 212, no. 4, pp. 390–395.

    Google Scholar 

  26. Szreder, T. and Zwierzchowski, L., Polymorphism within the bovine estrogen receptor-alpha gene 5'-region, J. Appl. Genet., 2004, vol. 45, no. 2, pp. 225–236.

    PubMed  Google Scholar 

  27. Kostenko, S.A. and Sidorenko, E.V., The effect of estrogen receptor gene polymorphism on the sperm productivity in boars of different breeds, Zootekhn. Nauka Belarusi, 2011, vol. 46, no. 1, pp. 105–112.

    Google Scholar 

  28. Kulesh, D.A., Clive, D.R., Zarlenga, D.S., and Greene, J.J., Identification of interferon-modulated proliferation-related cDNA sequences, Proc. Natl. Acad. Sci. U.S.A., 1987, vol. 84, pp. 8453–8457. https://doi.org/10.1073/pnas.84.23.8453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lashkari, D.A., DeRisi, J.L., McCusker, J.H., et al., Yeast microarrays for genome wide parallel genetic and gene expression analysis, Proc. Natl. Acad. Sci. U.S.A., 1997, vol. 94, pp. 13057–13062. https://doi.org/10.1073/pnas.94.24.13057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Schena, M., Shalon, D., Davis, R.W., and Brown, P.O., Quantitative monitoring of gene expression patterns with a complementary DNA microarray, Sci. J., 1995, vol. 270, pp. 467–470. https://doi.org/10.1126/science.270.5235.467

    Article  CAS  Google Scholar 

  31. Khrapko, Yu.P., Lysov, A.A., Khorlin, I.B., et al., A method for DNA sequencing by hybridization with oligonucleotide matrix, DNA Seq., 1991, vol. 1, no. 6, pp. 375–388. https://doi.org/10.3109/10425179109020793

    Article  CAS  PubMed  Google Scholar 

  32. Prasad, A., Mohammad Abid Hasan, S., Grouchy, S., and Gartia, M.R., DNA microarray analysis using a smartphone to detect the BRCA-1 gene, Analyst, 2019, vol. 144, pp. 197–205. https://doi.org/10.1039/C8AN01020J

    Article  CAS  Google Scholar 

  33. Kuznetsov, S.B. and Mikhailovskii, M.V., Development of a DNA microarray to identify genetic predisposition to idiopathic scoliosis, Mezhdunar. Zh. Prikl. Fundam. Issled., 2018, no. 11, pp. 67–74.

  34. Adebayo, O., Staphylococcus aureus from Nigeria and South Africa, PLoS One, 2021. https://doi.org/10.1371/journal.pone.0237124

  35. Nsofor, C.A., DNA microarrays and their applications in medical microbiology, Biotechnol. Mol. Biol. Rev., 2014, vol. 9, no. 1, pp. 1–11. https://doi.org/10.5897/BMBR2013.0216

    Article  CAS  Google Scholar 

  36. Korkor, M.T., Meng, F.B., Xing, S.Y., et al., Microarray analysis of differential gene expression profile in peripheral blood cells of patients with human essential hypertension, Int. J. Med. Sci., 2011, vol. 8, no. 2, pp. 168–179. https://doi.org/10.7150/ijms.8.168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Damin, F., Galbiati, S., Gagliardi, S., et al., CovidArray: a microarray-based assay with high sensitivity for the detection of Sars-Cov-2 in nasopharyngeal swabs, Sensors, 2021, vol. 21, p. 2490. https://doi.org/10.3390/s21072490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gibriel, A.A. and Adel, O., Advances in ligase chain reaction and ligation-based amplifications for genotyping assays: detection and applications, Mutat. Res., 2017, vol. 773, pp. 66–90. https://doi.org/10.1016/j.mrrev.2017.05.001

    Article  CAS  Google Scholar 

  39. Dufva, M., Fabrication of high quality microarrays, Biomol. Eng., 2005, vol. 22, nos. 5–6, pp. 173–184. https://doi.org/10.1016/j.bioeng.2005.09.003

    Article  CAS  PubMed  Google Scholar 

  40. Dufva, M., Petersen, J., Stoltenborg, M., et al., Detection of mutations using microarrays of poly(C)10–poly(T)10 modified DNA probes immobilized on agarose films, Anal. Biochem., 2006, vol. 352, pp. 188–197. https://doi.org/10.1016/j.ab.2006.03.008

    Article  CAS  PubMed  Google Scholar 

  41. Kimura, N., One-step immobilization of poly(dT)-modified DNA onto non-modified plastic substrates by UV irradiation for microarrays, Biochem. Biophys. Res. Commun., 2006, vol. 347, pp. 477–484. https://doi.org/10.1016/j.bbrc.2006.06.130

    Article  CAS  PubMed  Google Scholar 

  42. Sun, Y., Perch-Nielsen, I., Dufva, M., et al., Direct immobilization of DNA probes on non-modified plastics by UV irradiation and integration in microfluidic devices for rapid bioassay, Anal. Bioanal. Chem., 2012, vol. 402, pp. 741–748. https://doi.org/10.1007/s00216-011-5459-4

    Article  CAS  PubMed  Google Scholar 

  43. Kibbe, W.A., OligoCalc: an online oligonucleotide properties calculator, Nucleic Acids Res., 2007, vol. 35, no. 2, pp. W43–W46. https://doi.org/10.1093/nar/gkm234

    Article  PubMed  PubMed Central  Google Scholar 

  44. Fedorova, E.V., The number of livestock and poultry in farms of all categories, 2019. https://fedstat.ru/indicator/31325.

Download references

Funding

This study was supported by the Russian Science Foundation (grant no. 19-76-20061) (http://rscf.ru).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Stolpovsky.

Ethics declarations

Conflict of interest. The authors declare that they have no conflicts of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Translated by N. Maleeva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stolpovsky, Y.A., Kuznetsov, S.B., Solodneva, E.V. et al. New Cattle Genotyping System Based on DNA Microarray Technology. Russ J Genet 58, 885–898 (2022). https://doi.org/10.1134/S1022795422080099

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795422080099

Keywords:

Navigation