Skip to main content
Log in

Methylation of MAPT Gene in Neurodegenerative Synucleinopathies

  • HUMAN GENETICS
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Synucleinopathies are neurodegenerative disorders characterized by the accumulation of pathological aggregates of alpha-synuclein protein in central nervous system cells. Parkinson’s disease (PD) and multiple system atrophy (MSA) are the most common variants of synucleinopathies. The exact causes of these disorders are still unknown, but it is well established that both genetic and environmental factors are involved. Both polymorphisms in the MAPT gene and dysregulation of epigenetic mechanisms, particularly, methylation of transcription regulation regions of the genes, are risk factors of synucleinopathy development. We examined the influence of methylation level of the MAPT gene on the development of PD and MSA and performed a clinical and epigenetic comparison. We identified hypermethylation of three CpG sites in the promotor region of the MAPT gene in the group of MSA patients in comparison with controls. We also identified significant differences in methylation level of four CpG sites in the promotor region between MAPT haplotypes in the MSA group, and the protective H2 haplotype was hypomethylated. The modifying role of age and antiparkinsonian therapy with dopamine receptor agonists on the methylation level of the MAPT gene was established. The data obtained in comparative analysis of the methylation level in the group of synucleinopathies indicate the potential protective role of MAPT hypomethylation, as we found predominantly hypomethylated status of CpG sites in the control group, hypomethylation of protective H2 allele of the MAPT gene, and age-dependent increase in hypermethylation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Kovacs, G.G., Molecular pathological classification of neurodegenerative diseases: turning towards precision medicine, Int. J. Mol. Sci., 2016, vol. 17, no. 2, p. 189. https://doi.org/10.3390/ijms17020189

    Article  CAS  PubMed Central  Google Scholar 

  2. McCann, H., Stevens, C.H., Cartwright, H., and Halliday, G.M., α-Synucleinopathy phenotypes, Parkinsonism Relat. Disord., 2014, vol. 20, suppl. 1, pp. 62—67. https://doi.org/10.1016/S1353-8020(13)70017-8

    Article  Google Scholar 

  3. Bertram, L. and Tanzi, R.E., The genetic epidemiology of neurodegenerative disease, J. Clin. Invest., 2005, vol. 115, no. 6, pp. 1449—1457. https://doi.org/10.1172/JCI24761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hirsch, L., Jette, N., Frolkis, A., et al., The incidence of Parkinson’s disease: a systematic review and meta-analysis, Neuroepidemiology, 2016, vol. 46, no. 4, pp. 292—300. https://doi.org/10.1159/000445751

    Article  PubMed  Google Scholar 

  5. Karimi-Moghadam, A., Charsouei, S., Bell, B., and Jabalameli, M.R., Parkinson disease from mendelian forms to genetic susceptibility: new molecular insights into the neurodegeneration process, Cell. Mol. Neurobiol., 2018, vol. 38, no. 6, pp. 1153—1178. https://doi.org/10.1007/s10571-018-0587-4

    Article  PubMed  PubMed Central  Google Scholar 

  6. Schrag, A., Ben-Shlomo, Y., and Quinn, N.P., Cross sectional prevalence survey of idiopathic Parkinson’s disease and Parkinsonism in London, BMJ., 2000, vol. 321, no. 7252, pp. 21—22. https://doi.org/10.1136/bmj.321.7252.21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jankovic, J., Parkinson’s disease: clinical features and diagnosis, J. Neurol. Neurosurg. Psychiatry, 2008, vol. 79, no. 4, pp. 368—376. https://doi.org/10.1136/jnnp.2007.131045

    Article  CAS  PubMed  Google Scholar 

  8. Dickson, D.W., Parkinson’s disease and parkinsonism: neuropathology, Cold Spring Harb. Perspect. Med., 2012, vol. 2, no. 8. a009258. https://doi.org/10.1101/cshperspect.a009258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jankovic, J. and Tan, E.K., Parkinson’s disease: etiopathogenesis and treatment, J. Neurol. Neurosurg. Psychiatry, 2020, vol. 91, no. 8, pp. 795—808. https://doi.org/10.1136/jnnp-2019-322338

    Article  PubMed  Google Scholar 

  10. Simón-Sánchez, J., Schulte, C., Bras, J.M., et al., Genome-wide association study reveals genetic risk underlying Parkinson’s disease, Nat. Genet., 2009, vol. 41, no. 12, pp. 1308—1312. https://doi.org/10.1038/ng.487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nalls, M.A., Pankratz, N., Lill, C.M., et al., Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson’s disease, Nat. Genet., 2014, vol. 46, no. 9, pp. 989—993. https://doi.org/10.1038/ng.3043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chang, D., Nalls, M.A., Hallgrímsdóttir, I.B., et al., A meta-analysis of genome-wide association studies identifies 17 new Parkinson’s disease risk loci, Nat. Genet., 2017, vol. 49, no. 10, pp. 1511—1516. https://doi.org/10.1038/ng.3955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ozawa, T., Paviour, D., Quinn, N.P., et al., The spectrum of pathological involvement of the striatonigral and olivopontocerebellar systems in multiple system atrophy: clinicopathological correlations, Brain J. Neurol., 2004, vol. 127, part 12, pp. 2657—2671. https://doi.org/10.1093/brain/awh303

  14. Yoshida, M., Multiple system atrophy: alpha-synuclein and neuronal degeneration, Neuropathology, 2007, vol. 27, no. 5, pp. 484—493. https://doi.org/10.1111/j.1440-1789.2007.00841.x

    Article  PubMed  Google Scholar 

  15. Sailer, A., Scholz, S.W., Nalls, M.A., et al., A genome-wide association study in multiple system atrophy, Neurology, 2016, vol. 87, no. 15, pp. 1591—1598. https://doi.org/10.1212/WNL.0000000000003221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Portela, A. and Esteller, M., Epigenetic modifications and human disease, Nat. Biotechnol., 2010, vol. 28, no. 10, pp. 1057—1068. https://doi.org/10.1038/nbt.1685

    Article  CAS  PubMed  Google Scholar 

  17. Waddington, C.H., The epigenotype, 1942, Int. J. Epidemiol., 2012, vol. 41, no. 1, pp. 10—13. https://doi.org/10.1093/ije/dyr184

    Article  CAS  PubMed  Google Scholar 

  18. Marques, S., Oliveira, C., Pereira, C., and Outeiro, T., Epigenetics in neurodegeneration: a new layer of complexity, Prog. Neuropsychopharmacol. Biol. Psychiatry, 2011, vol. 35, no. 2, pp. 348—355. https://doi.org/10.1016/j.pnpbp.2010.08.008

    Article  CAS  PubMed  Google Scholar 

  19. Wüllner, U., Kaut, O., de Boni, L., et al., DNA methylation in Parkinson’s disease, J. Neurochem., 2016, vol. 139, suppl. 1, pp. 108—120. https://doi.org/10.1111/jnc.13646

    Article  CAS  PubMed  Google Scholar 

  20. Chartier-Harlin, M.C., Kachergus, J., Roumier, C., et al., Alpha-synuclein locus duplication as a cause of familial Parkinson’s disease, Lancet, 2004, vol. 364, no. 9440, pp. 1167—1169. https://doi.org/10.1016/S0140-6736(04)17103-1

    Article  CAS  PubMed  Google Scholar 

  21. Miller, D.W., Hague, S.M., Clarimon, J., et al., Alpha-synuclein in blood and brain from familial Parkinson disease with SNCA locus triplication, Neurology, 2004, vol. 62, no. 10, pp. 1835—1838. https://doi.org/10.1212/01.wnl.0000127517.33208.f4

    Article  CAS  PubMed  Google Scholar 

  22. Nemani, V.M., Lu, W., Berge, V., et al., Increased expression of alpha-synuclein reduces neurotransmitter release by inhibiting synaptic vesicle reclustering after endocytosis, Neuron, 2010, vol. 65, no. 1, pp. 66—79. https://doi.org/10.1016/j.neuron.2009.12.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Scott, D.A., Tabarean, I., Tang, Y., et al., A pathologic cascade leading to synaptic dysfunction in alpha-synuclein-induced neurodegeneration, J. Neurosci., 2010, vol. 30, no. 24, pp. 8083—8095. https://doi.org/10.1523/JNEUROSCI.1091-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jowaed, A., Schmitt, I., Kaut, O., and Wullner, U., Methylation regulates alpha-synuclein expression and is decreased in Parkinson’s disease patients’ brains, J. Neurosci., 2010, vol. 30, no. 18, pp. 6355—6359. https://doi.org/10.1523/JNEUROSCI.6119-09.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Matsumoto, L., Takuma, H., Tamaoka, A., et al., CpG demethylation enhances alpha-synuclein expression and affects the pathogenesis of Parkinson’s disease, PLoS One, 2010, vol. 5, no. 11. e15522. https://doi.org/10.1371/journal.pone.0015522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ai, S.X., Xu, Q., Hu, Y.C., et al., Hypomethylation of SNCA in blood of patients with sporadic Parkinson’s disease, J. Neurol. Sci., 2014, vol. 337, nos. 1—2, pp. 123—128. https://doi.org/10.1016/j.jns.2013.11.033

    Article  CAS  PubMed  Google Scholar 

  27. Tan Y.Y., Wu L., Zhao Z.B., et al., Methylation of α-synuclein and leucine-rich repeat kinase 2 in leukocyte DNA of Parkinson’s disease patients, Parkinsonism Relat. Disord., 2014, vol. 20, no. 3, pp. 308—313. https://doi.org/10.1016/j.parkreldis.2013.12.002

    Article  PubMed  Google Scholar 

  28. Pihlstrøm, L., Berge, V., Rengmark, A., and Toft, M., Parkinson’s disease correlates with promoter methylation in the α-synuclein gene, Mov. Disord., 2015, vol. 30, no. 4, pp. 577—580. https://doi.org/10.1002/mds.26073

    Article  CAS  PubMed  Google Scholar 

  29. Schmitt, I., Kaut, O., Khazneh, H., et al., L-dopa increases α-synuclein DNA methylation in Parkinson’s disease patients in vivo and in vitro, Mov. Disord., 2015, vol. 30, no. 13, pp. 1794—1801. https://doi.org/10.1002/mds.26319

    Article  CAS  PubMed  Google Scholar 

  30. Kwok, J.B., Teber, E.T., Loy, C., et al., Tau haplotypes regulate transcription and are associated with Parkinson’s disease, Ann. Neurol., 2004, vol. 55, no. 3, pp. 329—334. https://doi.org/10.1002/ana.1082614991810

    Article  CAS  PubMed  Google Scholar 

  31. Vilarino-Güell, C., Soto-Ortolaza, A.I., Rajput, A., et al., MAPT H1 haplotype is a risk factor for essential tremor and multiple system atrophy, Neurology, 2011, vol. 76, no. 7, pp. 670—672. https://doi.org/10.1212/WNL.0b013e31820c30c1

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ezquerra, M., Pastor, P., Gaig, C., et al., Different MAPT haplotypes are associated with Parkinson’s disease and progressive supranuclear palsy, Neurobiol. Aging, 2011, vol. 32, no. 3, p. 547. e11-6. https://doi.org/10.1016/j.neurobiolaging.2009.09.011

  33. Caillet-Boudin, M.L., Buée, L., Sergeant, N., and Lefebvre, B., Regulation of human MAPT gene expression, Mol. Neurodegener., 2015, vol. 10, no. 28, pp. 1—14. https://doi.org/10.1186/s13024-015-0025-8

    Article  CAS  Google Scholar 

  34. Gilman, S., Wenning, G.K., Low, P.A., et al., Second consensus statement on the diagnosis of multiple system atrophy, Neurology, 2008, vol. 71, no. 9, pp. 670—676. https://doi.org/10.1212/01.wnl.0000324625.00404.15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Coupland, K.G., Mellick, G.D., Silburn, P.A., et al., DNA methylation of the MAPT gene in Parkinson’s disease cohorts and modulation by vitamin E in vitro, Mov. Disord., 2014, vol. 29, pp. 1606—1614. https://doi.org/10.1002/mds.25784

    Article  CAS  PubMed  Google Scholar 

  36. Iwata, A., Nagata, K., Hatsuta, H., et al., Altered CpG methylation in sporadic Alzheimer’s disease is associated with APP and MAPT dysregulation, Hum. Mol. Genet., 2014, vol. 23, no. 3, pp. 648—656. https://doi.org/10.1093/hmg/ddt451

    Article  CAS  PubMed  Google Scholar 

  37. Hoffmann, A., Sportelli, V., Ziller, M., and Spengler, D., Driver or passenger: epigenomes in Alzheimer’s disease, Epigenomes, 2017, vol. 1, no. 1, article 5. https://doi.org/10.3390/epigenomes1010005

    Article  CAS  Google Scholar 

  38. Li, Y., Chen, J.A., Sears, R.L., et al., An epigenetic signature in peripheral blood associated with the haplotype on 17q21.31, a risk factor for neurodegenerative tauopathy, PLoS Genet., 2014, vol. 10, no. 3. e1004211

    Article  Google Scholar 

Download references

Funding

The present study had no financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Iakovenko.

Ethics declarations

Conflict of interest. The authors declare no conflict of interest.

Statement of compliance with standards of research involving humans as subjects. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants involved in the study.

Additional information

Translated by A. Kazantseva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iakovenko, E.V., Abramycheva, N.Y., Fedotova, E.Y. et al. Methylation of MAPT Gene in Neurodegenerative Synucleinopathies. Russ J Genet 58, 576–584 (2022). https://doi.org/10.1134/S1022795422050118

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795422050118

Keywords:

Navigation