Skip to main content
Log in

Tissue Specificity of the AqE Gene Activity in the Yellow Croaker Larimichthys crocea

  • MOLECULAR GENETICS
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The study of the diversity of metabolic pathways is an important aspect for understanding the evolutionary relationships between metabolic pathways and their biochemical precursors. Recently, researchers described a sulfolactate dehydrogenase-like protein encoded in eukaryotes by the AqE gene, which remains highly conserved in teleosts. However, the metabolic role of this enzyme is still unknown. In the present work, we studied the transcriptional activity of the AqE gene, as well as other genes associated with energy exchange in the large yellow croaker Larimichthys crocea. The quantitative analysis of expression showed the tissue specificity of the AqE gene activity in the yellow croaker. The gene is active in the liver, skin, and gills. The analysis of gene expression in various organs and under the influence of stressful conditions suggests that the enzyme encoded by the AqE gene is involved in the malate-aspartate shuttle or in the excretion of the final metabolites (sulfolactate) from the organism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Hochachka, P.W. and Somero, G.N., Biochemical Adaptation: Mechanisms and Process of Physiological Evolution, New York: Oxford University Press, 2002.

    Google Scholar 

  2. Madern, D., Molecular evolution within the L-malate and L-lactate dehydrogenase super-family, J. Mol. Evol., 2002, vol. 54, no. 6, pp. 825—840. https://doi.org/10.1007/s00239-001-0088-8

    Article  CAS  PubMed  Google Scholar 

  3. Honka, E., Fabry, S., Niermann, T., et al., Properties and primary structure of the L-malate dehydrogenase from the extremely thermophilic archaebacterium Methanothermus fervidus, Eur. J. Biochem., 1990, vol. 188, no. 3, pp. 623—632. https://doi.org/10.1111/j.1432-1033.1990.tb15443.x

    Article  CAS  PubMed  Google Scholar 

  4. Jendrossek, D., Kratzin, H.D., and Steinbüchel, A., The Alcaligenes eutrophus ldh structural gene encodes a novel type of lactate dehydrogenase, FEMS Microbiol. Lett., 1993, vol. 112, no. 2, pp. 229—235. https://doi.org/10.1111/j.1574-6968.1993.tb06453.x

    Article  CAS  PubMed  Google Scholar 

  5. Muramatsu, H., Mihara, H., Goto, M., et al., A new family of NAD(P)H-dependent oxidoreductases distinct from conventional Rossmann-fold proteins, J. Biosci. Bioeng., 2005, vol. 99, no. 6, pp. 541—547. https://doi.org/10.1263/jbb.99.541

    Article  CAS  PubMed  Google Scholar 

  6. Irimia, A., Madern, D., Zaccaï, G., and Vellieux, F.M., Methanoarchaeal sulfolactate dehydrogenase: prototype of a new family of NADH-dependent enzymes, EMBO J., 2004, vol. 23, no. 6, pp. 1234—1244. https://doi.org/10.1038/sj.emboj.7600147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Denger, K. and Cook, A.M., Racemase activity effected by two dehydrogenases in sulfolactate degradation by Chromohalobacter salexigens: purification of (S)-sulfolactate dehydrogenase, Microbiology (Reading), 2010, vol. 156, no. 3, pp. 967—974. https://doi.org/10.1099/mic.0.034736-0

    Article  CAS  PubMed  Google Scholar 

  8. Zhang, Y., Schofield, L.R., Sang, C., et al., Expression, purification, and characterization of (R)-sulfolactate dehydrogenase (ComC) from the rumen methanogen Methanobrevibacter millerae SM9, Archaea, 2017, article 5793620. https://doi.org/10.1155/2017/5793620

  9. Puzakova, L.V., Puzakov, M.V., and Soldatov, A.A., Gene encoding a novel enzyme of LDH2/MDH2 family is lost in plant and animal genomes during transition to land, J. Mol. Evol., 2019, vol. 87, no. 1, pp. 52—59. https://doi.org/10.1007/s00239-018-9884-2

    Article  CAS  PubMed  Google Scholar 

  10. Puzakova, L.V., Puzakov, M.V., and Gostyukhina, O.L., Newly discovered AqE gene is highly conserved in non-tetrapod vertebrates, J. Mol. Evol., 2021, vol. 89, nos. 4—5, pp. 214—224. https://doi.org/10.1007/s00239-021-09997-x

    Article  CAS  PubMed  Google Scholar 

  11. Weinstein, C.L. and Griffith, O.W., Cysteine sulfonate and beta-sulfopyruvate metabolism: partitioning between decarboxylation, transamination, and reduction pathways, J. Biol. Chem., 1988, vol. 263, no. 8, pp. 3735—3743.

    Article  CAS  Google Scholar 

  12. Borst, P., The malate—aspartate shuttle (Borst cycle): how it started and developed into a major metabolic pathway, IUBMB Life, 2020, vol. 72, no. 11, pp. 2241—2259. https://doi.org/10.1002/iub.2367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wu, C., Zhang, D., Kan, M., et al., The draft genome of the large yellow croaker reveals well-developed innate immunity, Nat. Commun., 2014, vol. 5, article 5227. https://doi.org/10.1038/ncomms6227

    Article  PubMed  Google Scholar 

  14. Bray, N.L., Pimentel, H., Melsted, P., and Pachter, L., Near-optimal probabilistic RNA-seq quantification, Nat. Biotechnol., 2016, vol. 34, no. 5, pp. 525—527. https://doi.org/10.1038/nbt.3519

    Article  CAS  PubMed  Google Scholar 

  15. Pimentel, H., Bray, N.L., Puente, S., et al., Differential analysis of RNA-seq incorporating quantification uncertainty, Nat. Methods, 2017, vol. 14, no. 7, pp. 687—690. https://doi.org/10.1038/nmeth.4324

    Article  CAS  PubMed  Google Scholar 

  16. Kessler, Y., Helfer-Hungerbuehler, A.K., Cattori, V., et al., Quantitative TaqMan real-time PCR assays for gene expression normalisation in feline tissues, BMC Mol. Biol., 2009, vol. 10, p.106. https://doi.org/10.1186/1471-2199-10-106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Leal, M.F., Astur, D.C., Debieux, P., et al., Identification of suitable reference genes for investigating gene expression in anterior cruciate ligament injury by using reverse transcription-quantitative PCR, PLoS One, 2015, vol. 10, no. 7, р. e0133323. https://doi.org/10.1371/journal.pone.0133323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Minárik, P., Tomásková, N., Kollárová, M., and Antalík, M., Malate dehydrogenases—structure and function, Gen. Physiol. Biophys., 2002, vol. 21, no. 3, pp. 257—265.

    PubMed  Google Scholar 

  19. Otto-Ślusarczyk, D., Graboń, W., and Mielczarek-Puta, M., Aminotransferaza asparaginianowa—kluczowy enzym w metabolizmie ogólnoustrojowym człowieka, Postepy Hig. Med. Dosw., 2016, vol. 70, pp. 219—230. https://doi.org/10.5604/17322693.1197373

    Article  Google Scholar 

  20. Laganá, G., Barreca, D., Calderaro, A., and Bellocco, E., Lactate dehydrogenase inhibition: biochemical relevance and therapeutical potential, Curr. Med. Chem., 2019, vol. 26, no. 18, pp. 3242—3252. https://doi.org/10.2174/0929867324666170209103444

    Article  CAS  PubMed  Google Scholar 

  21. Steenweg, M.E., Jakobs, C., Errami, A., et al., An overview of L-2-hydroxyglutarate dehydrogenase gene (L2HGDH) variants: a genotype—phenotype study, Hum. Mutat., 2010, vol. 31, no. 4, pp. 380—390. https://doi.org/10.1002/humu.21197

    Article  CAS  PubMed  Google Scholar 

  22. Musrati, R.A., Kollárová, M., Mernik, N., and Mikulásová, D., Malate dehydrogenase: distribution, function and properties, Gen. Physiol. Biophys., 1998, vol. 17, no. 3, pp. 193—210.

    CAS  PubMed  Google Scholar 

  23. Mitrakou, A., Kidney: its impact on glucose homeostasis and hormonal regulation, Diabetes Res. Clin. Pract., 2011, vol. 93, suppl. 1, pp. S66—S72. https://doi.org/10.1016/S0168-8227(11)70016-X

    Article  CAS  PubMed  Google Scholar 

  24. Walsh, K. and Koshland, D.E., Jr., Determination of flux through the branch point of two metabolic cycles: the tricarboxylic acid cycle and the glyoxylate shunt, J. Biol. Chem., 1984, vol. 259, no. 15, pp. 9646—9654.

    Article  CAS  Google Scholar 

  25. Pan, Y., Chen, H., Siu, F., and Kilberg, M.S., Amino acid deprivation and endoplasmic reticulum stress induce expression of multiple activating transcription factor-3 mRNA species that, when overexpressed in HepG2 cells, modulate transcription by the human asparagine synthetase promoter, J. Biol. Chem., 2003, vol. 278, no. 40, pp. 38402—38412. https://doi.org/10.1074/jbc.M304574200

    Article  CAS  PubMed  Google Scholar 

  26. Bever, K., Chenoweth, M., and Dunn, A., Amino acid gluconeogenesis and glucose turnover in kelp bass (Paralabrax sp.), Am. J. Physiol., 1981, vol. 240, no. 3, pp. 246—252. https://doi.org/10.1152/ajpregu.1981.240.3.R246

    Article  Google Scholar 

  27. Kumar, V., Sahu, N.P., and Pal, A.K., Modulation of key enzymes of glycolysis, gluconeogenesis, amino acid catabolism, and TCA cycle of the tropical freshwater fish Labeo rohita fed gelatinized and non-gelatinized starch diet, Fish Physiol., Biochem., 2010, vol. 36, no. 3, pp. 491—499. https://doi.org/10.1007/s10695-009-9319-5

    Article  CAS  Google Scholar 

  28. Artsimovich, N.G., Nastoyashchaya, N.N., Kazanskii, D.B., and Lomakin, M.S., The liver as an organ of immunobiological system of homeostasis, Usp. Sovrem. Biol., 1992, vol. 112, no. 1, pp. 116—124.

    Google Scholar 

  29. Zemkov, G.V. and Zhuravleva, G.F., The kinetics of pathological changes in cumulative toxicosis as the tolerance criterium of the fish population, Usp. Sovrem. Estestvozn., 2004, no. 1, pp. 41—47.

Download references

Funding

The work was supported by the state assignment of the Federal Research Center Kovalevsky Institute of Biology of the Southern Seas, Russian Academy of Sciences, “Functional, Metabolic, and Toxicological Aspects of the Existence of Hydrobionts and Their Populations in Biotopes with Different Physicochemical Regimes,” state registration number 121041400077-1, and by the Russian Foundation for Basic Research and the city of Sevastopol, scientific project no. 20-44-920006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. V. Puzakova.

Ethics declarations

Conflict of interest. The authors declare they have no conflicts of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals have been followed.

Additional information

Translated by A. Lisenkova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Puzakova, L.V., Puzakov, M.V. Tissue Specificity of the AqE Gene Activity in the Yellow Croaker Larimichthys crocea. Russ J Genet 58, 538–546 (2022). https://doi.org/10.1134/S1022795422050076

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795422050076

Keywords:

Navigation