Skip to main content
Log in

Gene Pool Homogeneity of Western and Eastern Populations of the White-Naped Crane Antigone vipio in Different Flyways

  • ANIMAL GENETICS
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The article presents the first data on the genetic structure of the White-naped crane Antigone vipio, a rare migratory bird species of Northeast Asia. Based on the analysis of seven polymorphic microsatellite loci and full-lengh mitochondrial DNA Control Region sequencing (1132 bp), the genetic homogeneity of spatially separated western and eastern populations was established. The found high levels of observed (HO = 0.696 ± 0.033) and expected (HE = 0.707 ± 0.037) heterozygosity and haplotype diversity (Hd = 0.973) of the White-naped crane were comparable to these parameters in wide-range crane species with a large population sizes. Lack of genetic differentiation by microsatellite loci (FST = 0.013, P = 0.369), the low level of genetic differences by the Control Region (FST = 0.041, P = 0.05), and generally low level of intraspecific spatial structuring in the White-naped crane by haplotypes and individual multilocus genotypes may be due to the absence of reproductive isolation between individuals from different populations and changes in the migration routes of immature birds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. BirdLife International: Antigone vipio, The IUCN Red List of threatened species 2018. e.T22692073A131927305. https://doi.org/10.2305/IUCN.UK.2018-2.RLTS.T2-2692073A131927305.en

  2. Meine, C.D. and Archibald, G.W., The Cranes: Status Survey and Conservation Action Plan, Gland, Switzerland: IUCN, 1996.

    Google Scholar 

  3. Crane Conservation Strategy, Mirande, C.M. and Harris, J.T., Eds., International Crane Foundation: Baraboo, Wisconsin, 2019.

    Google Scholar 

  4. Archibald, G., Global crane status 2021, in Zhuravli Evrazii (rasprostranenie, biologiya) (Cranes of Eurasia (Distribution, Biology)), 2021, issue 6, pp. 31—67.

  5. Goroshko, O.A. and Surmach, S.G., The Demoiselle crane, in Krasnaya kniga Rossiiskoi Federatsii (zhivotnye) (The Red Book of the Russian Federation (Animals)), Moscow: Vseross. Nauchno-Issled. Inst. Ekologiya, 2021, 2nd ed., pp. 684—686.

  6. Jones, K.L., Henkel, J.R., Howard, J.J., et al., Isolation and characterization of 14 polymorphic microsatellite DNA loci for the endangered whooping crane (Grus americana) and their applicability to other crane species, Conserv. Gen. Res., 2010, vol. 2, no. 1, pp. 251—254. https://doi.org/10.1007/s12686-010-9196-3

    Article  Google Scholar 

  7. Meares, K., Dawson, D., Horsburgh, G.J., et al., Characterisation of 14 blue crane Grus paradisea (Gruidae, Aves) microsatellite loci for use in detecting illegal trade, Conserv. Genet., 2008, vol. 9, pp. 1363—1367. https://doi.org/10.1007/s10592-007-9490-0

    Article  Google Scholar 

  8. Zou, H.F., Dong, H.Y., Kong, W.Y., et al., Characterization of 18 polymorphic microsatellite loci in the red-crowned crane (Grus japonensis), an endangered bird, Anim. Sci. J., 2010, vol. 81, no. 4, pp. 519—522. https://doi.org/10.1111/j.1740-0929.2010.00779.x

    Article  CAS  PubMed  Google Scholar 

  9. Lazar, I., Jr. and Lazar, I., Sr., GelAnalyzer 19.1. http//www.gelanalyzer.com.

  10. Hasegawa, O., Takada, S., Yoshida, M.C., and Abe, S., Variation of mitochondrial control region sequences in three crane species, the red-crowned crane Grus japonensis, the common crane G. grus and the hooded crane G. monacha, Zool. Sci., 1999, vol. 16, pp. 685—692.

    Article  CAS  Google Scholar 

  11. Peakall, R. and Smouse, P.E., GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update, Bioinformatics, 2012, no. 28, pp. 2537—2539. https://doi.org/10.1093/bioinformatics/bts460

  12. Pritchard, J.K., Matthew, S., and Peter, D., Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies, Genetics, 2000, vol. 164, no. 4, pp. 1567—1587. https://doi.org/10.3410/f.1015548.197423

    Article  Google Scholar 

  13. Kopelman, N.M., Mayzel, J., Jakobsson, M., et al., Clumpak: a program for identifying clustering modes and packaging population structure inferences across K, Mol. Ecol. Res., 2015, vol. 15, no. 5, pp. 1179—1191. https://doi.org/10.1111/1755-0998.12387

    Article  CAS  Google Scholar 

  14. Jombart, T., Adegenet: a R package for the multivariate analysis of genetic markers, Bioinformatics, 2008, vol. 24, pp. 1403—1405. https://doi.org/10.1093/bioinformatics/btn129

    Article  CAS  PubMed  Google Scholar 

  15. Wickham, H., ggplot2: Elegant Graphics for Data Analysis, New York: Springer-Verlag, 2016.

  16. RStudio Team, RStudio: Integrated Development Environment for R. RStudio, Boston, MA: PBC, 2021. http://www.rstudio.com.http://www.rstudio.com.

  17. R Core Team, R: A Language and Environment for Statistical Computing, Vienna: R Foundation for Statistical Computing, 2021. https://www.R-project.org.

  18. Katoh, K., Misawa, K., Kuma, K., and Miyata, T., MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform, Nucleic Acids Res., 2002, vol. 30, no. 14, pp. 3059—3066. https://doi.org/10.1093/nar/gkf436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kearse, M., Moir, R., Wilson, A., et al., Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data, Bioinformatics, 2012, vol. 28, no. 12, pp. 1647—1649. https://doi.org/10.1093/bioinformatics/bts199

    Article  PubMed  PubMed Central  Google Scholar 

  20. Librado, P. and Rozas, J., DnaSP v5: a software for comprehensive analysis of DNA polymorphism data, Bioinformatics, 2009, vol. 25, pp. 1451—1452. https://doi.org/10.1093/bioinformatics/btp187

    Article  CAS  PubMed  Google Scholar 

  21. Clement, M., Snell, Q., Walke, P., et al., TCS: estimating gene genealogies, Proceedings 16th International Parallel and Distributed Processing Symposium, 2002, vol. 2, p. 184.

  22. Leigh, J.W. and Bryant, D., PopART: full-feature software for haplotype network construction, Methods Ecol. Evol., 2015, vol. 6, no. 9, pp. 1110—1116. https://doi.org/10.1111/2041-210X.12410

    Article  Google Scholar 

  23. Rhymer, J.M., Fain, M.G., Austin, J.E., et al., Mitochondrial phylogeography, subspecific taxonomy, and conservation genetics of sandhill cranes (Grus canadensis; Aves: Gruidae), Conserv. Gen., 2001, vol. 2, pp. 260—266.

    Google Scholar 

  24. Mudrik, E.A., Kashentseva, T.A., Redchuk, P.S., et al., Microsatellite variability data confirm low genetic differentiation of western and eastern subspecies of Common crane Grus grus L. (Gruidae, Aves), Mol. Biol. (Moscow), 2015, vol. 49, no. 2, pp. 260—266. https://doi.org/10.1134/S0026893315020090

    Article  CAS  Google Scholar 

  25. Mudrik, E.A., Ilyashenko, E.I., Goroshko, O.A., et al., The Demoiselle crane (Anthropoides virgo) population genetic structure in Russia, Vavilov J. Genetics and Breeding, 2018, vol. 22, no. 5, pp. 586—592. https://doi.org/10.18699/VJ18.398

    Article  Google Scholar 

  26. Mudrik, E.A., Ilyashenko, E.I., Ilyashenko, V.Y., et al., Genetic diversity and differentiation of the widespread migratory Demoiselle crane, Grus virgo, on the northern edge of the species’ distribution, J. Ornithol., 2022, vol. 163, no. 1, pp. 291–299. https://doi.org/10.1007/s10336-021-01919-4

    Article  Google Scholar 

  27. Glenn, T.C., Wolfgang, S., and Braun, M.J., Effects of a population bottleneck on whooping crane mitochondrial DNA variation, Conserv. Biol., 1999, vol. 13, no. 5, pp. 1097—1107.

    Article  Google Scholar 

  28. Sugimoto, T., Hasegawa, O., Azuma, N., et al., Genetic structure of the endangered red-crowned cranes in Hokkaido, Japan and conservation implications, Conserv. Biol., 2015, vol. 16, pp. 1395—1401. https://doi.org/10.1007/s10592-015-0748-7

    Article  Google Scholar 

  29. Goroshko, O.A. and Tseveenmyadag, N., Data on the impact of droughts on the population of white-naped cranes, in Nazemnye pozvonochnye Daurii (Terrestrial Vertabrates of Dauria), Sbornik nauchnykh trudov Gosudarsvennogo prirodnogo biosfernogo zapovednika Daurskii (Collection of Scientific Papers of the Daursky State Natural Biosphere Reserve), Chita: Poisk, 2003, issue 3, pp. 121—130.

  30. Goroshko, O.A., White-naped crane, in Krasnaya kniga Zabaikal’skogo kraya: zhivotnye (The Red Book of Zabaykalskii Krai: Animals), Novosibirsk: Novosibirsrii Izdatel’skii Dom, 2012, pp. 120—122.

  31. Goroshko, O.A., Population dynamics and quality of bird habitats in Dauria under conditions of long-term climate cycles, in Arealy, migratsii i drugie peremeshcheniya dikikh zhivotnykh (Ranges, Migrations and Other Movements of Wild Animals), Vladivostok: Reya, 2014, pp. 74—80.

  32. Goroshko, O.A., Dynamics and current state of crane populations in Dauria (Transbaikalia, Mongolia) in Zhuravli Evrazii (biologiya, okhrana, Upravleniye) (Cranes of Eurasia (Biology, Conservation, Menagement)), 2015, issue 5, pp. 116—134.

  33. Goroshko, O.A., Crane count data from Southeastern Transbaikalia, Russia, 2016—2020 in Zhuravli Evrazii (rasprostranenie, biologiya) (Cranes of Eurasia (Distribution, Biology)), 2021, issue 6, pp. 82—105.

  34. Haase, M., Holtje, H., Blahy, B., et al., Shallow genetic population structure in an expanding migratory bird with high breeding site fidelity, the Western Eurasian crane Grus grus grus, J. Ornithol., 2019, vol. 160, pp. 965—972. https://doi.org/10.1007/s10336-019-01688-1

    Article  Google Scholar 

  35. Haase, M. and Ilyashenko, V., A glimpse on mitochondrial differentiation among four currently recognized subspecies of the common crane Grus grus, Ardeola, 2012, vol. 59, no. 1, pp. 131—136. https://doi.org/10.13157/arla.59.1.2012.131

    Article  Google Scholar 

  36. Zhang, L., Zhou, L., and Dai, Y., Genetic structure of wintering Hooded cranes (Grus monacha) based on mitochondrial DNA D-loop sequences, Chin. Birds, 2012, vol. 3, no. 2, pp. 71—81. https://doi.org/10.5122/cbirds.2012.0012

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank E.Yu. Gavrikova and N.V. Kuznetsova for providing biological material from White-naped cranes kept at Reintroduction Station of Rare Birds of Khingan State Nature Reserve.

Funding

The work was supported by the Russian Foundation for Basic Research, grant no. 17-04-01287, the state task 0112-2019-0001, and also with partial support of the International Research and Production Program of the Eurasian Regional Association of Zoos and Aquariums “Conservation of Cranes of Eurasia” (2012–2019 and 2021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Mudrik.

Ethics declarations

Conflict of interest. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for animal care and use have been followed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mudrik, E.A., Goroshko, O.A., Surmach, S.G. et al. Gene Pool Homogeneity of Western and Eastern Populations of the White-Naped Crane Antigone vipio in Different Flyways. Russ J Genet 58, 566–575 (2022). https://doi.org/10.1134/S1022795422050064

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795422050064

Keywords:

Navigation