Skip to main content

Advertisement

Log in

Gene-Immune Therapy of Cancer: Approaches and Problems

  • REVIEWS AND THEORETICAL ARTICLES
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Tumor heterogeneity and constant selection of therapy-resistant cancer cells in the tumor require combinatorial approaches to the treatment of cancer that affect various vital processes in the tumor. Immunotherapy made a revolution among approaches to cancer treatment. Today, many combinatorial methods are grouped around this type of treatment. Most antitumor immunotherapeutic agents are administered intravenously, which cause serious, often life-threatening, side effects due to the accumulation of these agents in nontarget tissues. Side effects can be reduced using local therapy, which is limited to the tumor, but at the same time causes systemic antitumor immune response. Localization of the action can be achieved by intratumoral introduction of therapeutic genes. These genes can encode a variety of therapeutic products, ranging from checkpoint inhibitors and immunomodulators to enzymes that mediate intratumoral conversion of prodrugs into chemotherapeutic agents (gene-directed enzyme prodrug therapy, GDEPT). In this review, we will consider approaches that use intratumoral introduction of therapeutic genes encoding molecules of immune checkpoints, cytokines, danger signals, and GDEPT enzymes, as well as their combination for gene-immune therapy of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Hanahan, D. and Coussens, L.M., Accessories to the crime: functions of cells recruited to the tumor microenvironment, Cancer Cell, 2012, vol. 21, no. 3, pp. 309—322. https://doi.org/10.1016/j.ccr.2012.02.022

    Article  CAS  PubMed  Google Scholar 

  2. Smyth, M.J., Ngiow, S.F., Ribas, A., and Teng, M.W., Combination cancer immunotherapies tailored to the tumour microenvironment, Nat. Rev. Clin. Oncol., 2016, vol. 13, no. 3, pp. 143—158. https://doi.org/10.1038/nrclinonc.2015.209

    Article  CAS  PubMed  Google Scholar 

  3. Chen, L. and Flies, D.B., Molecular mechanisms of T cell co-stimulation and co-inhibition, Nat. Rev. Immunol., 2013, vol. 13, no. 4, pp. 227—242. https://doi.org/10.1038/nri3405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Forster, M.D. and Devlin, M.J., Immune checkpoint inhibition in head and neck cancer, Front. Oncol., 2018, vol. 8, p. 310. https://doi.org/10.3389/fonc.2018.00310

    Article  PubMed  PubMed Central  Google Scholar 

  5. Hude, I., Sasse, S., Engert, A., and Brockelmann, P.J., The emerging role of immune checkpoint inhibition in malignant lymphoma, Haematologica, 2017, vol. 102, no. 1, pp. 30–42. https://doi.org/10.3324/haematol.2016.150656

  6. Marin-Acevedo, J.A., Dholaria, B., Soyano, A.E., et al., Next generation of immune checkpoint therapy in cancer: new developments and challenges, J. Hematol. Oncol., 2018, vol. 11, no. 1, p. 39. https://doi.org/10.1186/s13045-018-0582-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rotte, A., Combination of CTLA-4 and PD-1 blockers for treatment of cancer, J. Exp. Clin. Cancer Res., 2019, vol. 38, no. 1, p. 255. https://doi.org/10.1186/s13046-019-1259-z

    Article  PubMed  PubMed Central  Google Scholar 

  8. Sharma, P. and Allison, J.P., The future of immune checkpoint therapy, Science, 2015, vol. 348, no. 6230, pp. 56—61. https://doi.org/10.1126/science.aaa8172

    Article  CAS  PubMed  Google Scholar 

  9. Sharpe, A.H., Introduction to checkpoint inhibitors and cancer immunotherapy, Immunol. Rev., 2017, vol. 276, no. 1, pp. 5—8. https://doi.org/10.1111/imr.12531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Postow, M., Toxicities associated with checkpoint inhibitor immunotherapy, UpToDate. https://www.uptodate.com/contents/toxicities-associated-with-checkpoint-inhibitor-immunotherapy. This topic last updated: Aug 12, 2021.

  11. Alexander, W., The checkpoint immunotherapy revolution: what started as a trickle has become a flood, despite some daunting adverse effects; new drugs, indications, and combinations continue to emerge, P T, 2016, vol. 41, no. 3, pp. 185—191.

    PubMed  PubMed Central  Google Scholar 

  12. Postow, M.A., Sidlow, R., and Hellmann, M.D., Immune-related adverse events associated with immune checkpoint blockade, N. Engl. J. Med., 2018, vol. 378, no. 2, pp. 158—168. https://doi.org/10.1056/NEJMra1703481

    Article  CAS  PubMed  Google Scholar 

  13. Abdin, S.M., Zaher, D.M., Arafa, E.A., and Omar, H.A., Tackling cancer resistance by immunotherapy: updated clinical impact and safety of PD-1/PD-L1 inhibitors, Cancers (Basel), 2018, vol. 10, no. 2, p. 32. https://doi.org/10.3390/cancers10020032

    Article  CAS  PubMed Central  Google Scholar 

  14. Stein-Merlob, A.F., Rothberg, M.V., Ribas, A., and Yang, E.H., Cardiotoxicities of novel cancer immunotherapies, Heart, 2021. heartjnl-2020-318083. https://doi.org/10.1136/heartjnl-2020-318083

  15. Portsmouth, D., Hlavaty, J., and Renner, M., Suicide genes for cancer therapy, Mol. Aspects Med., 2007, vol. 28, no. 1, pp. 4—41. https://doi.org/10.1016/j.mam.2006.12.001

    Article  CAS  PubMed  Google Scholar 

  16. Ascierto, P.A., Del Vecchio, M., Mackiewicz, A., et al., Overall survival at 5 years of follow-up in a phase III trial comparing ipilimumab 10 mg/kg with 3 mg/kg in patients with advanced melanoma, J. Immunother. Cancer., 2020, vol. 8, no. 1, p. e000391. https://doi.org/10.1136/jitc-2019-000391

    Article  PubMed  PubMed Central  Google Scholar 

  17. Chen, D.S. and Mellman, I., Oncology meets immunology: the cancer-immunity cycle, Immunity, 2013, vol. 39, no. 1, pp. 1—10. https://doi.org/10.1016/j.immuni.2013.07.012

    Article  CAS  PubMed  Google Scholar 

  18. Ziani, L., Chouaib, S., and Thiery, J., Alteration of the antitumor immune response by cancer-associated fibroblasts, Front. Immunol., 2018, vol. 9, p. 414. https://doi.org/10.3389/fimmu.2018.00414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Milling, L., Zhang, Y., and Irvine, D.J., Delivering safer immunotherapies for cancer, Adv. Drug Deliv. Rev., 2017, vol. 114, pp. 79—101. https://doi.org/10.1016/j.addr.2017.05.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Song, W., Shen, L., Wang, Y., et al., Synergistic and low adverse effect cancer immunotherapy by immunogenic chemotherapy and locally expressed PD-L1 trap, Nat. Commun., 2018, vol. 9, no. 1, p. 2237. https://doi.org/10.1038/s41467-018-04605-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hewitt, S.L., Bai, A., Bailey, D., et al,. Durable anticancer immunity from intratumoral administration of IL-23, IL-36gamma, and OX40L mRNAs, Sci. Transl. Med., 2019, vol. 11, no. 477. eaat9143. https://doi.org/10.1126/scitranslmed.aat9143

  22. Jimeno, A., Gupta, S., Sullivan, R., et al., Abstract CT032: a phase 1/2, open-label, multicenter, dose escalation and efficacy study of mRNA-2416, a lipid nanoparticle encapsulated mRNA encoding human OX40L, for intratumoral injection alone or in combination with durvalumab for patients with advanced malignancies, Cancer Res., 2020, vol. 76, no. 14, suppl., p. CT032. https://doi.org/10.1158/1538-7445.AM2020-CT032

    Article  Google Scholar 

  23. Bartkowiak, T. and Curran, M.A., 4-1BB agonists: multi-potent potentiators of tumor immunity, Front. Oncol., 2015, vol. 5, p. 117. https://doi.org/10.3389/fonc.2015.00117

    Article  PubMed  PubMed Central  Google Scholar 

  24. Andarini, S., Kikuchi, T., Nukiwa, M., et al., Adenovirus vector-mediated in vivo gene transfer of OX40 ligand to tumor cells enhances antitumor immunity of tumor-bearing hosts, Cancer Res., 2004, vol. 64, no. 9, pp. 3281—3287. https://doi.org/10.1158/0008-5472.can-03-3911

    Article  CAS  PubMed  Google Scholar 

  25. Huang, J.H., Zhang, S.N., Choi, K.J., et al., Therapeutic and tumor-specific immunity induced by combination of dendritic cells and oncolytic adenovirus expressing IL-12 and 4-1BBL, Mol. Ther., 2010, vol. 18, no. 2, pp. 264—274. https://doi.org/10.1038/mt.2009.205

    Article  CAS  PubMed  Google Scholar 

  26. Shin, C.A., Cho, H.W., Shin, A.R., et al., Co-expression of CD40L with CD70 or OX40L increases B-cell viability and antitumor efficacy, Oncotarget, 2016, vol. 7, no. 29, pp. 46173—46186. https://doi.org/10.18632/oncotarget.10068

    Article  PubMed  PubMed Central  Google Scholar 

  27. Eriksson, E., Milenova, I., Wenthe, J., et al., Shaping the tumor stroma and sparking immune activation by CD40 and 4-1BB signaling induced by an armed oncolytic virus, Clin. Cancer Res., 2017, vol. 23, no. 19, pp. 5846—5857. https://doi.org/10.1158/1078-0432.CCR-17-0285

    Article  CAS  PubMed  Google Scholar 

  28. Svensson, E., Milenova, I., Moreno, R., et al., Abstract 297: immunotherapy with a CD40L/4-1BBL double-armed oncolytic adenovirus drives Th1 immunity and control tumor progression in a pancreas cancer model, Cancer Res., 2015, vol. 75, no. 15, suppl., p. 297. https://doi.org/10.1158/1538-7445.AM2015-297

    Article  Google Scholar 

  29. De Lombaerde, E., De Wever, O., and De Geest, B.G., Delivery routes matter: safety and efficacy of intratumoral immunotherapy, Biochim. Biophys. Acta. Rev. Cancer, 2021, vol. 1875, no. 2, p. 188526. https://doi.org/10.1016/j.bbcan.2021.188526

    Article  CAS  Google Scholar 

  30. Cytokines in the balance, Nat. Immunol., 2019, vol. 20, no. 12, p. 1557. https://doi.org/10.1038/s41590-019-0557-0

  31. Qiu, Y., Su, M., Liu, L., et al., Clinical application of cytokines in cancer immunotherapy, Drug Des. Devel. Ther., 2021, vol. 15, pp. 2269—2287. https://doi.org/10.2147/DDDT.S308578

    Article  PubMed  PubMed Central  Google Scholar 

  32. Neri, D. and Sondel, P.M., Immunocytokines for cancer treatment: past, present and future, Curr. Opin. Immunol., 2016, vol. 40, pp. 96—102. https://doi.org/10.1016/j.coi.2016.03.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Daud, A.I., DeConti, R.C., Andrews, S., et al., Phase I trial of interleukin-12 plasmid electroporation in patients with metastatic melanoma, J. Clin. Oncol., 2008, vol. 26, no. 36, pp. 5896—5903. https://doi.org/10.1200/JCO.2007.15.6794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Daud, A., Algazi, A.P., Ashworth, M.T., et al., Systemic antitumor effect and clinical response in a phase 2 trial of intratumoral electroporation of plasmid interleukin-12 in patients with advanced melanoma, J. Clin. Oncol., 2014, vol. 32, no. 15, suppl., p. 9025. https://doi.org/10.1200/jco.2014.32.15_suppl.9025

    Article  Google Scholar 

  35. Algazi, A., Bhatia, S., Agarwala, S., et al., Intratumoral delivery of tavokinogene telseplasmid yields systemic immune responses in metastatic melanoma patients, Ann. Oncol., 2020, vol. 31, no. 4, pp. 532—540. https://doi.org/10.1016/j.annonc.2019.12.008

    Article  CAS  PubMed  Google Scholar 

  36. Yan, C., Jie, L., Yongqi, W., et al., Delivery of human NKG2D-IL-15 fusion gene by chitosan nanoparticles to enhance antitumor immunity, Biochem. Biophys. Res. Commun., 2015, vol. 463, no. 3, pp. 336—343. https://doi.org/10.1016/j.bbrc.2015.05.065

    Article  CAS  PubMed  Google Scholar 

  37. Tan, L., Han, S., Ding, S., et al., Chitosan nanoparticle-based delivery of fused NKG2D-IL-21 gene suppresses colon cancer growth in mice, Int. J. Nanomed., 2017, vol. 12, pp. 3095—3107. https://doi.org/10.2147/IJN.S128032

    Article  CAS  Google Scholar 

  38. Bechter, O., Utikal, J., Baurain, J.-F., et al., A first-in-human study of intratumoral SAR441000, an mRNA mixture encoding IL-12sc, interferon alpha2b, GM-CSF and IL-15sushi as monotherapy and in combination with cemiplimab in advanced solid tumors, J. Immunother. Cancer, 2020, vol. 8, suppl. 3, pp. A237—A238, abstract 391. https://doi.org/10.1136/jitc-2020-SITC2020.0391

  39. Pol, J.G., Workenhe, S.T., Konda, P., et al., Cytokines in oncolytic virotherapy, Cytokine Growth Factor Rev., 2020, vol. 56, pp. 4—27. https://doi.org/10.1016/j.cytogfr.2020.10.007

    Article  CAS  PubMed  Google Scholar 

  40. Aurelian, L., Oncolytic viruses as immunotherapy: progress and remaining challenges, Onco Targets Ther., 2016, vol. 9, pp. 2627—2637. https://doi.org/10.2147/OTT.S63049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Andtbacka, R.H., Kaufman, H.L., Collichio, F., et al., Talimogene laherparepvec improves durable response rate in patients with advanced melanoma, J. Clin. Oncol., 2015, vol. 33, no. 25, pp. 2780—2788. https://doi.org/10.1200/JCO.2014.58.3377

    Article  CAS  PubMed  Google Scholar 

  42. Gallucci, S. and Matzinger, P. Danger signals: SOS to the immune system, Curr. Opin. Immunol., 2001, vol. 13, no. 1, pp. 114—119. https://doi.org/10.1016/s0952-7915(00)00191-6

    Article  CAS  PubMed  Google Scholar 

  43. Guo, Z.S., Liu, Z., and Bartlett, D.L., Oncolytic immunotherapy: dying the right way is a key to eliciting potent antitumor immunity, Front. Oncol., 2014, vol. 4, p. 74. https://doi.org/10.3389/fonc.2014.00074

    Article  PubMed  PubMed Central  Google Scholar 

  44. Roh, J.S. and Sohn, D.H., Damage-associated molecular patterns in inflammatory diseases, Immune Netw., 2018, vol. 18, no. 4, p. e27. https://doi.org/10.4110/in.2018.18.e27

    Article  PubMed  PubMed Central  Google Scholar 

  45. Galluzzi, L., Buque, A., Kepp, O., et al., Immunogenic cell death in cancer and infectious disease, Nat. Rev. Immunol., 2017, vol. 17, no. 2, pp. 97—111. https://doi.org/10.1038/nri.2016.107

    Article  CAS  PubMed  Google Scholar 

  46. Heil, M. and Land, W.G., Danger signals—damaged-self recognition across the tree of life, Front. Plant Sci., 2014, vol. 5, p. 578. https://doi.org/10.3389/fpls.2014.00578

    Article  PubMed  PubMed Central  Google Scholar 

  47. van der Burg, S.H., Arens, R., Ossendorp, F., et al., Vaccines for established cancer: overcoming the challenges posed by immune evasion, Nat. Rev. Cancer., 2016, vol. 16, no. 4, pp. 219—233. https://doi.org/10.1038/nrc.2016.16

    Article  CAS  PubMed  Google Scholar 

  48. Okude, H., Ori, D., and Kawai, T., Signaling through nucleic acid sensors and their roles in inflammatory diseases, Front. Immunol., 2020, vol. 11, p. 625833. https://doi.org/10.3389/fimmu.2020.625833

    Article  CAS  PubMed  Google Scholar 

  49. Aleynick, M., Svensson-Arvelund, J., Flowers, C.R., et al., Pathogen molecular pattern receptor agonists: treating cancer by mimicking infection, Clin. Cancer Res., 2019, vol. 25, no. 21, pp. 6283—6294. https://doi.org/10.1158/1078-0432.CCR-18-1800

    Article  CAS  PubMed  Google Scholar 

  50. Bai, L., Li, W., Zheng, W., et al., Promising targets based on pattern recognition receptors for cancer immunotherapy, Pharmacol. Res., 2020, vol. 159, p. 105017. https://doi.org/10.1016/j.phrs.2020.105017

    Article  CAS  PubMed  Google Scholar 

  51. Jin, B., Sun, T., Yu, X.H., et al., The effects of TLR activation on T-cell development and differentiation, Clin. Dev. Immunol., 2012, vol. 2012, p. 836485. https://doi.org/10.1155/2012/836485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Vijayan, A., Rumbo, M., Carnoy, C., and Sirard, J.C., Compartmentalized antimicrobial defenses in response to flagellin, Trends. Microbiol., 2018, vol. 26, no. 5, pp. 423—435. https://doi.org/10.1016/j.tim.2017.10.008

    Article  CAS  PubMed  Google Scholar 

  53. Geng, D., Kaczanowska, S., Tsai, A., et al., TLR5 ligand-secreting T cells reshape the tumor microenvironment and enhance antitumor activity, Cancer Res., 2015, vol. 75, no. 10, pp. 1959—1971. https://doi.org/10.1158/0008-5472.CAN-14-2467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yu, X., Guo, C., Yi, H., et al., A multifunctional chimeric chaperone serves as a novel immune modulator inducing therapeutic antitumor immunity, Cancer Res., 2013, vol. 73, no. 7, pp. 2093—2103. https://doi.org/10.1158/0008-5472.CAN-12-1740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Huang, X.F., Ren, W., Rollins, L., et al., A broadly applicable, personalized heat shock protein-mediated oncolytic tumor vaccine, Cancer Res., 2003, vol. 63, no. 21, pp. 7321—7329.

    CAS  PubMed  Google Scholar 

  56. Li, J.L., Liu, H.L., Zhang, X.R., et al., A phase I trial of intratumoral administration of recombinant oncolytic adenovirus overexpressing HSP70 in advanced solid tumor patients, Gene Ther., 2009, vol. 16, no. 3, pp. 376—382. https://doi.org/10.1038/gt.2008.179

    Article  CAS  PubMed  Google Scholar 

  57. Golden, E.B., Pellicciotta, I., Demaria, S., et al., The convergence of radiation and immunogenic cell death signaling pathways, Front. Oncol., 2012, vol. 2, p. 88. https://doi.org/10.3389/fonc.2012.00088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kroemer, G., Galluzzi, L., Kepp, O., and Zitvogel, L., Immunogenic cell death in cancer therapy, Annu. Rev. Immunol., 2013, vol. 31, pp. 51—72. https://doi.org/10.1146/annurev-immunol-032712-100008

    Article  CAS  PubMed  Google Scholar 

  59. Woller, N., Gurlevik, E., Ureche, C.I., et al., Oncolytic viruses as anticancer vaccines, Front. Oncol., 2014, vol. 4, p. 188. https://doi.org/10.3389/fonc.2014.00188

    Article  PubMed  PubMed Central  Google Scholar 

  60. Uusi-Kerttula, H., Hulin-Curtis, S., Davies, J., and Parker, A.L., Oncolytic adenovirus: strategies and insights for vector design and immuno-oncolytic applications, Viruses, 2015, vol. 7, no. 11, pp. 6009—6042. https://doi.org/10.3390/v7112923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sverdlov, E.D., Genetic surgery—a right strategy to attack cancer, Curr. Gene Ther., 2011, vol. 11, no. 6, pp. 501—531. https://doi.org/10.2174/156652311798192842

    Article  CAS  PubMed  Google Scholar 

  62. Hamstra, D.A., Lee, K.C., Tychewicz, J.M., et al., The use of 19F spectroscopy and diffusion-weighted MRI to evaluate differences in gene-dependent enzyme prodrug therapies, Mol. Ther., 2004, vol. 10, no. 5, pp. 916—928. https://doi.org/10.1016/j.ymthe.2004.07.022

    Article  CAS  PubMed  Google Scholar 

  63. Azatian, A., Yu, H., Dai, W., et al., Effectiveness of HSV-tk suicide gene therapy driven by the Grp78 stress-inducible promoter in esophagogastric junction and gastric adenocarcinomas, J. Gastrointest. Surg., 2009, vol. 13, no. 6, pp. 1044—1051. https://doi.org/10.1007/s11605-009-0839-1

    Article  PubMed  Google Scholar 

  64. Alekseenko, I.V., Snezhkov, E.V., Chernov, I.P., et al., Therapeutic properties of a vector carrying the HSV thymidine kinase and GM-CSF genes and delivered as a complex with a cationic copolymer, J. Transl. Med., 2015, vol. 13, p. 78. https://doi.org/10.1186/s12967-015-0433-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hojeij, R., Domingos-Pereira, S., Nkosi, M., et al., Immunogenic human papillomavirus pseudovirus-mediated suicide-gene therapy for bladder cancer, Int. J. Mol. Sci., 2016, vol. 17, no. 7, p. 1125. https://doi.org/10.3390/ijms17071125

    Article  CAS  PubMed Central  Google Scholar 

  66. Greco, R., Oliveira, G., Stanghellini, M.T., et al., Improving the safety of cell therapy with the TK-suicide gene, Front. Pharmacol., 2015, vol. 6, p. 95. https://doi.org/10.3389/fphar.2015.00095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Yi, Q.Y., Bai, Z.S., Cai, B., et al., HSVTK/GCV can induce cytotoxicity of retinoblastoma cells through autophagy inhibition by activating MAPK/ERK, Oncol. Rep., 2018, vol. 40, no. 2, pp. 682—692. https://doi.org/10.3892/or.2018.6454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ram, Z., Culver, K.W., Oshiro, E.M., et al., Therapy of malignant brain tumors by intratumoral implantation of retroviral vector-producing cells, Nat. Med., 1997, vol. 3, no. 12, pp. 1354—1361. https://doi.org/10.1038/nm1297-1354

    Article  CAS  PubMed  Google Scholar 

  69. Immonen, A., Vapalahti, M., Tyynela, K., et al., AdvHSV‑tk gene therapy with intravenous ganciclovir improves survival in human malignant glioma: a randomised, controlled study, Mol. Ther., 2004, vol. 10, no. 5, pp. 967—972. https://doi.org/10.1016/j.ymthe.2004.08.002

    Article  CAS  PubMed  Google Scholar 

  70. EMA, Ark Therapeutics Ltd. withdraws its marketing authorisation application for Cerepro (sitimagene ceradenovec). https://www.ema.europa.eu/en/news/ark-therapeutics-ltd-withdraws-its-marketing-authorisation-application-cerepro-sitimagene.

  71. Shen, C.H., Lin, M.C., Fang, C.Y., et al., Suppression of bone metastatic castration-resistant prostate cancer cell growth by a suicide gene delivered by JC polyomavirus-like particles, Gene Ther., 2021. https://doi.org/10.1038/s41434-021-00280-8

  72. Emamian, M., Abbaspour, A., Shahani, T., et al., Non-viral suicide gene therapy: cytosine deaminase gene directed by VEGF promoter and 5-fluorocytosine as a gene directed enzyme/prodrug system in breast cancer model, Drug Res. (Stuttgart), 2021, vol. 71, no. 7, pp. 395—406. https://doi.org/10.1055/a-1488-6054

    Article  CAS  Google Scholar 

  73. Yu, C.F., Hong, J.H., and Chiang, C.S., The roles of macrophages and nitric oxide in interleukin-3-enhanced HSV-Sr39tk-mediated prodrug therapy, PLoS One, 2013, vol. 8, no. 2. e56508. https://doi.org/10.1371/journal.pone.0056508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Majumdar, A.S., Zolotorev, A., Samuel, S., et al., Efficacy of herpes simplex virus thymidine kinase in combination with cytokine gene therapy in an experimental metastatic breast cancer model, Cancer Gene Ther., 2000, vol. 7, no. 7, pp. 1086—1099. https://doi.org/10.1038/sj.cgt.7700215

    Article  CAS  PubMed  Google Scholar 

  75. Lechanteur, C., Delvenne, P., Princen, F., et al., Combined suicide and cytokine gene therapy for peritoneal carcinomatosis, Gut, 2000, vol. 47, no. 3, pp. 343—348. https://doi.org/10.1136/gut.47.3.343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Finocchiaro, L.M., Fiszman, G.L., Karara, A.L., and Glikin, G.C., Suicide gene and cytokines combined nonviral gene therapy for spontaneous canine melanoma, Cancer Gene Ther., 2008, vol. 15, no. 3, pp. 165—172. https://doi.org/10.1038/sj.cgt.7701096

    Article  CAS  PubMed  Google Scholar 

  77. Brockstedt, D.G., Diagana, M., Zhang, Y., et al., Development of anti-tumor immunity against a non-immunogenic mammary carcinoma through in vivo somatic GM-CSF, IL-2, and HSVtk combination gene therapy, Mol. Ther., 2002, vol. 6, no. 5, pp. 627—636.

    CAS  PubMed  Google Scholar 

  78. Castleden, S.A., Chong, H., Garcia-Ribas, I., et al., A family of bicistronic vectors to enhance both local and systemic antitumor effects of HSVtk or cytokine expression in a murine melanoma model, Hum. Gene Ther., 1997, vol. 8, no. 17, pp. 2087—2102. https://doi.org/10.1089/hum.1997.8.17-2087

    Article  CAS  PubMed  Google Scholar 

  79. Lee, K.H., Piao, H., Son, B.R., et al., Herpes simplex virus thymidine kinase and granulocyte macrophage colony-stimulating factor combination gene therapy in a murine CT26 cell colon cancer model, Cancer Gene Ther., 2004, vol. 11, no. 8, pp. 570—576. https://doi.org/10.1038/sj.cgt.7700736

    Article  CAS  PubMed  Google Scholar 

  80. Braun, B., Lange, M., Oeckler, R., and Mueller, M.M., Expression of G-CSF and GM-CSF in human meningiomas correlates with increased tumor proliferation and vascularization, J. Neurooncol., 2004, vol. 68, no. 2, pp. 131—140. https://doi.org/10.1023/b:neon.0000027751.87894.f0

    Article  PubMed  Google Scholar 

  81. Lemos de Matos, A., Franco, L.S., McFadden, G., Oncolytic viruses and the immune system: the dynamic duo, Mol. Ther. Methods Clin. Dev., 2020, vol. 17, pp. 349—358. https://doi.org/10.1016/j.omtm.2020.01.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ke, L., Cai, P., and Wu, Y.-L., Polymeric nonviral gene delivery systems for cancer immunotherapy, Adv. Ther., 2020, vol. 3, no. 6, p. 1900213. https://doi.org/10.1002/adtp.201900213

    Article  CAS  Google Scholar 

  83. Lu, M., Freytag, S.O., and Stricker, H., et al., Adaptive seamless design for an efficacy trial of replication-competent adenovirus-mediated suicide gene therapy and radiation in newly-diagnosed prostate cancer (ReCAP trial), Contemp. Clin. Trials, 2011, vol. 32, no. 3, pp. 453—460. https://doi.org/10.1016/j.cct.2011.01.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ostertag, D., Amundson, K.K., Lopez Espinoza, F., et al., Brain tumor eradication and prolonged survival from intratumoral conversion of 5-fluorocytosine to 5‑fluorouracil using a nonlytic retroviral replicating vector, Neuro. Oncol., 2012, vol. 14, no. 2, pp. 145—159. https://doi.org/10.1093/neuonc/nor199

    Article  CAS  PubMed  Google Scholar 

  85. Twitty, C.G., Diago, O.R., Hogan, D.J., et al., Retroviral replicating vectors deliver cytosine deaminase leading to targeted 5-fluorouracil-mediated cytotoxicity in multiple human cancer types, Hum. Gene Ther. Methods, 2016, vol. 27, no. 1, pp. 17—31. https://doi.org/10.1089/hgtb.2015.106

    Article  CAS  PubMed  Google Scholar 

  86. Huber, B.E., Austin, E.A., Richards, C.A., et al., Metabolism of 5-fluorocytosine to 5-fluorouracil in human colorectal tumor cells transduced with the cytosine deaminase gene: significant antitumor effects when only a small percentage of tumor cells express cytosine deaminase, Proc. Natl. Acad. Sci. U.S.A., 1994, vol. 91, no. 17, pp. 8302—8306. https://doi.org/10.1073/pnas.91.17.8302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Hwang, K.S., Cho, W.K., Yoo, J., et al., Adenovirus-mediated interleukin-12 gene transfer combined with cytosine deaminase followed by 5-fluorocytosine treatment exerts potent antitumor activity in Renca tumor-bearing mice, BMC Cancer, 2005, vol. 5, p. 51. https://doi.org/10.1186/1471-2407-5-51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Akbulut, H., Coleri, A., Sahin, G., et al., A bicistronic adenoviral vector carrying cytosine deaminase and granulocyte-macrophage colony-stimulating factor increases the therapeutic efficacy of cancer gene therapy, Hum. Gene Ther., 2019, vol. 30, no. 8, pp. 999—1007. https://doi.org/10.1089/hum.2018.245

    Article  CAS  PubMed  Google Scholar 

  89. Perez, O.D., Logg, C.R., Hiraoka, K., et al., Design and selection of Toca 511 for clinical use: modified retroviral replicating vector with improved stability and gene expression, Mol. Ther., 2012, vol. 20, no. 9, pp. 1689—1698. https://doi.org/10.1038/mt.2012.83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Cloughesy, T.F., Landolfi, J., Vogelbaum, M.A, et al., Durable complete responses in some recurrent high-grade glioma patients treated with Toca 511 + Toca FC, Neurol. Oncol., 2018, vol. 20, no. 10, pp. 1383—1392. https://doi.org/10.1093/neuonc/noy075

    Article  CAS  Google Scholar 

  91. National Brain Tumor Society, National Brain Tumor Society Statement on Tocagen Designation, 2017. https://blog.braintumor.org/press_releases/national-brain-tumor-society-statement-on-tocagen-designation.

  92. Collins, S.A., Shah, A.H., Ostertag, D., et al., Clinical development of retroviral replicating vector Toca 511 for gene therapy of cancer, Expert. Opin. Biol. Ther., 2021, vol. 10, pp. 1—16. https://doi.org/10.1080/14712598.2021.1902982

    Article  CAS  Google Scholar 

  93. Aznar, M.A., Tinari, N., Rullan, A.J., et al., Intratumoral delivery of immunotherapy-act locally, think globally, J. Immunol., 2017, vol. 198, no. 1, pp. 31—39. https://doi.org/10.4049/jimmunol.1601145

    Article  CAS  PubMed  Google Scholar 

  94. Wang, W., Ji, W., Hu, H., et al., Survivin promoter-regulated oncolytic adenovirus with Hsp70 gene exerts effective antitumor efficacy in gastric cancer immunotherapy, Oncotarget., 2014, vol. 5, no. 1, pp. 150—160. https://doi.org/10.18632/oncotarget.1430

    Article  PubMed  Google Scholar 

  95. Mett, V., Komarova, E.A., Greene, K., et al., Mobilan: a recombinant adenovirus carrying Toll-like receptor 5 self-activating cassette for cancer immunotherapy, Oncogene, 2018, vol. 37, no. 4, pp. 439—449. https://doi.org/10.1038/onc.2017.346

    Article  CAS  PubMed  Google Scholar 

  96. Liu, Z., Yang, Y., Zhang, X., et al., An oncolytic adenovirus encoding decorin and granulocyte macrophage colony stimulating factor inhibits tumor growth in a colorectal tumor model by targeting pro-tumorigenic signals and via immune activation, Hum. Gene Ther., 2017, vol. 28, no. 8, pp. 667—680. https://doi.org/10.1089/hum.2017.033

    Article  CAS  PubMed  Google Scholar 

  97. Oh, E., Choi, I.K., Hong, J., and Yun, C.O., Oncolytic adenovirus coexpressing interleukin-12 and decorin overcomes Treg-mediated immunosuppression inducing potent antitumor effects in a weakly immunogenic tumor model, Oncotarget., 2017, vol. 8, no. 3, pp. 4730—4746. https://doi.org/10.18632/oncotarget.13972

    Article  PubMed  Google Scholar 

  98. Ushigusa,T., Koyama, Y., Ito, T., et al., Innate immunity mediated by dendritic cells/macrophages plays a central role in the early period in tumor treatment using gene of Mycobacterium tuberculosis antigen, J. Vet. Med. Sci., 2018, vol. 80, no. 2, pp. 190—196. https://doi.org/10.1292/jvms.17-0466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Koyama, Y., Yoshihara, C., and Ito, T., Novel antitumor strategy utilizing a plasmid expressing a Mycobacterium tuberculosis antigen as a “Danger Signal” to block immune escape of tumor cells, Pharmaceutics, 2015, vol. 7, no. 3, pp. 165—174. https://doi.org/10.3390/pharmaceutics7030165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was financially supported by the Russian Foundation for Basic Research (project no. 20-115-50440).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Alekseenko.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by D. Novikova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alekseenko, I.V., Pleshkan, V.V., Kuzmich, A.I. et al. Gene-Immune Therapy of Cancer: Approaches and Problems. Russ J Genet 58, 491–506 (2022). https://doi.org/10.1134/S1022795422040020

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795422040020

Keywords:

Navigation