Skip to main content
Log in

Genetic Diversity of Four Species of the Genus Astragalus L. Section Cenantrum Bunge (Fabaceae) in the Asian Part of Russia according to the Data of trnL–trnF Chloroplast DNA Variability and Isozyme Markers

  • PLANT GENETICS
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The genetic diversity and phylogenetic relationships of four species of the genus Astragalus of the section Cenantrum, A. frigidus, A. mongholicus, A. penduliflorus, and A. sericeocanus from the Asian part of Russia, were studied according to the variability of trnL-trnF cpDNA and isozyme markers. For each species, specific sets of chloroplast haplotypes, alleles, and isoenzyme frequencies were identified. According to cpDNA data, the studied populations are characterized by low haplotype (h varies from 0.095 to 0.333) and nucleotide (π varies from 0.00019 to 0.00378) diversity. Most of the populations (20 out of 27) were monomorphic. According to the data of isoenzyme analysis, the indicators of polymorphism for three species (with the exception of the monomorphic population of A. penduliflorus) have rather high values. For a species on average, the polymorphism (P95) varies from 55.5 to 85.5%, the number of alleles per locus (A) is from 1.8 to 2.7, and the observed heterozygosity (Ho) is from 0.134 to 0.215. The geographic confinement of haplotypes and polymorphic populations of A. frigidus and A. mongholicus was revealed in Altai and Baikal Siberia. These localities are probably situated at the intersection of migration routes or refugia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Zarre, Sh. and Azani, N., Perspectives in taxonomy and phylogeny of the genus Astragalus (Fabaceae): a review, Prog. Biol. Sci., 2013, vol. 3, no. 1, pp. 1—6. https://doi.org/10.22059/PBS.2013.32086

    Article  Google Scholar 

  2. Frodin, D.G., History and concepts of big plant genera, Taxon, 2004, vol. 53, no. 3, pp. 753—776. https://doi.org/10.2307/4135449

    Article  Google Scholar 

  3. Podlech, D., Revision von Astragalus L. sect. Caprini DC. (Leguminosae), Mitt. Bot. Staatssamml. München, 1988, vol. 25, pp. 1—924.

    Google Scholar 

  4. Sytin, A.K., Species of the genus Astragalus L. (Fabaceae) of East Europe and the Caucasus: systematics, geography, and evolution, Extended Abstract of Doctoral Dissertation, St. Petersburg, 2009.

  5. Podlech, D. and Zarre, Sh., A Taxonomic Revision of the Genus Astragalus L. (Leguminosae) in the Old World, Vienna: Natural History Museum, 2013, vol. 1.

    Google Scholar 

  6. Belyaev, A.Yu., Dymshakova, O.S., Zimnitskaya, S.A., and Knyazev, M.S., Unique natural population of Astragalus penduliflorus Lam. s.l. in the Middle Urals, Problemy populyatsionnoi biologii (Problems of Population Biology) (Proc. XII All-Russian Population Seminar in memoriam of N.V. Glotov (1939—2016)), Ioshkar-Ola: STRING, 2017, pp. 41—43.

  7. Sandanov, D.V. and Krivenko, D.A., Astragalus sericeocanus Gontsch., in Krasnaya kniga Respubliki Buryatiya: redkie i nakhodyashchiesya pod ugrozoi ischeznoveniya vidy zhivotnykh, rastenii i gribov (The Red Book of the Republic of Buryatia: Rare and Endangered Species of Animals, Plants and Fungi), Ulan-Ude: Buryat. Nauchn. Tsentr Sib. Otd. Ross. Akad. Nauk, 2013, pp. 518—519.

  8. Karron, J.D., Linhart, Y.B., Chaulk, C.A., and Robertson, C.A., Genetic structure of populations of geographically restricted and widespread species of Astragalus (Fabaceae), Am. J. Bot., 1988, vol. 75, no. 8, pp. 1114—1119. https://doi.org/10.1002/j.1537-2197.1988.tb08823.x

    Article  Google Scholar 

  9. Kazempour Osaloo, S., Maassoumi, A.A., and Murakami, N., Molecular systematics of the genus Astragalus L. (Fabaceae): phylogenetic analyses of nuclear ribosomal DNA internal transcribed spacers and chloroplast gene ndhF sequences, Plant Syst. Evol., 2003, vol. 242, nos. 1—4, pp. 1—32. https://doi.org/10.1007/s00606-003-0014-1

    Article  CAS  Google Scholar 

  10. Riahi, M., Zarre, Sh., Maassoumi, A.A., et al., Towards a phylogeny for Astragalus section Carpini (Fabaceae) and its allies based on nuclear and plastid DNA sequences, Plant Syst. Evol., 2011, vol. 293, nos. 1—4, pp. 119—133. https://doi.org/10.1007/s00606-011-0417-3

    Article  Google Scholar 

  11. Choi, I.-S., Kim, S.-Y., and Choi, B.-H., Taxonomic position and genetic differentiation of Korean Astragalus mongholicus Bunge, Korean J. Plant Taxon., 2013, vol. 43, no. 1, pp. 12—21. https://doi.org/10.11110/kjpt.2013.43.1.12

    Article  Google Scholar 

  12. Devey, M.E., Bell, J.C., Smith, D.N., et al., A genetic linkage map for Pinus radiata based on RFLP, RAPD and microsatellite markers, Theor. Appl. Genet., 1996, vol. 92, no. 6, pp. 673—679. https://doi.org/10.1007/BF00226088

    Article  CAS  PubMed  Google Scholar 

  13. Taberlet, P., Gielly, L., Pautou, G., and Bouvet, J., Universal primers for amplification of three non-coding regions of chloroplast DNA, Plant Mol. Biol., 1991, vol. 17, no. 5, pp. 1105—1109. https://doi.org/10.1007/BF00037152

    Article  CAS  PubMed  Google Scholar 

  14. Hantemirova, E.V., Pimenova, E.A., and Korchagina, O.S., Polymorphism of chloroplast DNA and phylogeography of green alder (Alnus alnobetula (Ehrh.) K. Koch s.l.) in Asiatic Russia, Russ. J. Genet., 2018, vol. 54, no. 1, pp. 64—74. https://doi.org/10.1134/S1022795418010052

    Article  CAS  Google Scholar 

  15. Shaw, J., Lickey, E.B., Beck, J.T., et al., The tortoise and the hare II: relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis, Am. J. Bot., 2005, vol. 92, no. 1, pp. 142—166. https://doi.org/10.3732/ajb.92.1.142

    Article  CAS  PubMed  Google Scholar 

  16. Hall, T.A., BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT, Nucleic Acids Symp. Ser., 1999, vol. 41, pp. 95—98. https://doi.org/10.14601/Phytopathol_Mediterr-14998u1.29

    Article  CAS  Google Scholar 

  17. Bassam, B.J., Caetano-Anollés, G., and Gresshoff, P.M., Fast and sensitive silver staining of DNA in polyacrylamide gels, Anal. Biochem., 1991, vol. 196, no. 1, pp. 80—83. https://doi.org/10.1016/0003-2697(91)90120-I

    Article  CAS  PubMed  Google Scholar 

  18. Bandelt, H.-J., Forster, P., and Röhl, A., Median-joining networks for inferring intraspecific phylogenies, Mol. Biol. Evol., 1999, vol. 16, no. 1, pp. 37—48. https://doi.org/10.1093/oxfordjournals.molbev.a026036

    Article  CAS  Google Scholar 

  19. Excoffier, L., Laval, G., and Schneider, S., Arlequin ver. 3.0: an integrated software package for population genetics data analysis, Evol. Bioinf. Online, 2005, vol. 1, pp. 47—50.

    Article  CAS  Google Scholar 

  20. Rozas, J., Sánchez-DelBarrio, J.C., Messeguer, X., and Rozas, R., DnaSP, DNA polymorphism analyses by the coalescent and other methods, Bioinformatics, 2003, vol. 19, no. 18, pp. 2496—2497. https://doi.org/10.1093/bioinformatics/btg359

    Article  CAS  PubMed  Google Scholar 

  21. Petit, R.J., Duminil, J., Fineschi, S., et al., Comparative organization chloroplast, mitochondrial and nuclear diversity in plant populations, Mol. Ecol., 2005, vol. 14, no. 3, pp. 689—701. https://doi.org/10.1111/j.1365-294X.2004.02410.x

    Article  CAS  PubMed  Google Scholar 

  22. Pons, O. and Petit, R.J., Measuring and testing genetic differentiation with ordered versus unordered alleles, Genetics, 1996, vol. 144, pp. 1237—1245.

    Article  CAS  Google Scholar 

  23. Tajima, F., The effect of change in population size on DNA polymorphism, Genetics, 1989, vol. 123, no. 3, pp. 597—601.

    Article  CAS  Google Scholar 

  24. Fu, Y.-X., Statistical tests of neutrality of mutation against population growth hitchhiking and background selection, Genetics, 1997, vol. 147, no. 2, pp. 915—925.

    Article  CAS  Google Scholar 

  25. Dymshakova, O.S., Krivenko, D.A., Belyaev, A.Y., and Verkhozina, A.V., Genetic differentiation of the three species of genus Astragalus L. of section Cenantrum Bunge (Fabaceae) Russ. J. Genet., 2015, vol. 51, no. 8, pp. 757—764. https://doi.org/10.1134/S1022795415080025

    Article  CAS  Google Scholar 

  26. Nei, M., Estimation of average heterozygosity and genetic distance from a small number of individuals, Genetics, 1978, vol. 89, no. 3, pp. 583—590.

    Article  CAS  Google Scholar 

  27. Wright, S., Evolution and the Genetics of Populations, vol. 4: Variability within and among Natural Populations, Chicago: Univ. Chicago Press, 1978.

    Google Scholar 

  28. Shurkhal, A.V., Podogas, A.V., and Zhivotovskii, L.A., Levels of genetic differentiation in hard pine, genus Pinus, subgenus Pinus, according to allozyme variability, Genetika (Moscow), 1993, vol. 29, no. 1, pp. 77—90.

    Google Scholar 

  29. Forman, R.T.T. and Alexander, L.E., Roads and their major ecological effect, Ann. Rev. Ecol. Syst., 1998, vol. 29, pp. 207—231. https://doi.org/10.1146/annurev.ecolsys.29.1.207

    Article  Google Scholar 

  30. Plenk, K., Willnerb, W., Deminaet, O.N., et al., Phylogeographic evidence for long-term persistence of the Eurasian steppe plant Astragalus onobrychis in the Pannonian region (eastern Central Europe), Flora, 2020, vol. 264, pp. 1—10. https://doi.org/10.1016/j.flora.2020.151555

    Article  Google Scholar 

  31. Timofeev-Resovskii, N.V., Yablokov, A.V., and Glotov, N.V., Ocherk ucheniya o populyatsii (An Essay on Population), Moscow: Nauka, 1973.

  32. Li, L., Zheng, S., Brinckmann, J., et al., Chemical and genetic diversity of Astragalus mongholicus grown in different eco-climatic region, PLoS One, 2017, vol. 12, no. 9. e0184791. https://doi.org/10.1371/journal.pone.0184791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bargheri, A., Maasoumi, A.A., Rahiminejad, M.R., et al., Molecular phylogeny and divergence time of Astragalus section Hymenostegis: an analysis of rapidly diversifying species group in Fabaceae, Sci. Rep., 2017, vol. 7. 14033. https://doi.org/10.1038/s41598-017-14614-3

    Article  CAS  Google Scholar 

  34. Abramson, N.I., Phylogeography: results, current challenges, and prospects, Inf. Vestn. Vavilovskogo O-va. Genet. Sel., 2007, vol. 11, no. 2, pp. 307—331.

    Google Scholar 

  35. Soltis, D.E., Soltis, P.S., Ranker, T.A., and Ness, B.D., Chloroplast DNA variation in a wild plant, Tolmiea menziesii, Genetics, 1989, vol. 121, no. 4, pp. 819—826.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to our colleagues A.V. Verkhozina, E.V. Zhmud’, M.A. Polezhayeva, D.V. Sandanov, D.G. Chimitov and E.G. Filippov for their assistance in collecting research material and data analysis.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to O. S. Korchagina or D. A. Krivenko.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by E. Makeeva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korchagina, O.S., Krivenko, D.A. & Belyaev, A.Y. Genetic Diversity of Four Species of the Genus Astragalus L. Section Cenantrum Bunge (Fabaceae) in the Asian Part of Russia according to the Data of trnL–trnF Chloroplast DNA Variability and Isozyme Markers. Russ J Genet 58, 27–35 (2022). https://doi.org/10.1134/S1022795422010057

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795422010057

Keywords:

Navigation