Abstract
The polymorphism of six nuclear genes, ACE (I/D, rs1799752), NOS3 (4b/4a, rs61722009), ADRA2B (I/D, rs28365031), MTHFR (С677Т, rs1801133), TCF7L2 (rs7903146), and CSK (rs1378942), as well as mitochondrial DNA, was examined in the population of Amur Evenks. It was demonstrated that among Evenks, Eastern Eurasian mtDNA haplogroups with the predominance of two of them, C and D (58%), were the most common. These haplogroups are most typical of the populations of North Asia and Siberia. Among West Eurasian haplogroups, the most common is haplogroup H (15%). The lowest statistically significant differences in mtDNA were found between Evenks, Turks, and Samoyeds, and the largest differences were with Finno-Ugric populations. The observed distribution of frequencies of loci for four genes in the studied population did not differ from the theoretically expected under the Hardy–Weinberg law, with the exception of TCF7L2 and CSK loci. Statistically significant association for gametic disequilibrium was observed between four pairs of genes (ACE and MTHFR, ACE and TCF7L2, NOS3 and CSK, ADRA2B and MTHFR). The distribution of allele associations at six loci was assessed using the maximum likelihood method. The number of associated alleles was calculated for each pseudohaplotype. It was demonstrated that the number of associated alleles proportionally increased with the decrease of pseudohaplotype frequency (R2 = 0.5, R = 0.7, d.f. = 16, P < 0.001). It is suggested that the data obtained are characteristic not only of the studied population and also may reflect such processes as gametic disequilibrium (meiotic drive).


Similar content being viewed by others
REFERENCES
Derevyanko, A.P., Volkov, P.V., and Li, Kh., Selemdzhinskaya pozdnepaleoliticheskaya kul’tura (Selemdzhin Late Paleolithic Culture), Novosibirsk: Inst. Arkheol. Etnografii Sib. Otd. Russ. Akad. Nauk, 1998.
Nesterov, S.P., Narody Priamur’ya v epokhu rannego srednevekov’ya (Peoples of the Amur River Region in the Early Middle Age), Novosibirsk: Inst. Arkheol. Etnografii Sib. Otd. Russ. Akad. Nauk, 1998.
All-Russian Population Census, 2010.
Zabiyako, A.P., Anikhovskii, S.E., Voronkova, E.A., et al., Evenki Priamur’ya: olennaya tropa istorii i kul’tury (Evenks of the Amur River Region: Reindeer Trail of History and Culture), Zabiyako, A.P., Ed., Blagoveshchensk, 2012.
Istoriya i kul’tura dal’nevostochnykh evenkov: istoriko-etnograficheskie ocherki (History and Culture of the Far Eastern Evenks: Historical and Ethnographic Essays), Turaev, V.A., Ed., St. Petersburg: Nauka, 2010.
Debets, G.F., Antropologicheskie issledovaniya v Kamchatskoi oblasti (Anthropological Research in Kamchatka Oblast), vol. XVII of Trudy Instituta Etnografii Akad. Nauk SSSR (Proceedings of Institute for Ethnography USSR Academy of Sciences), 1951.
Levin, M.G., Etnicheskaya antropologiya i problemy etnogeneza narodov Dal’nego Vostoka (Ethnic Anthropology and Problems of Ethnogenesis of the Peoples of the Far East), vol. XXXVI of Trudy Instituta Etnografii Akad. Nauk SSSR (Proceedings of Institute for Ethnography USSR Academy of Sciences), 1958.
Baranov, V.S., Ivashchenko, T.E., and Baranova, E.V., Geneticheskii passport—osnova individual’noi i prediktivnoi meditsiny (Genetic Pass: the Basis of Personalized and Predictive Medicine), St. Petersburg: Nauka, 2009.
Gorbunova, V.N., Genetics and epigenetics of syntropic diseases, Ekol. Genet., 2010, vol. 8, no. 4, pp. 39—43.
Snapir, A., Scheinin, M., Groop, L.C., and Orho-Melander, M., The insertion/deletion variation in the α2B-adrenoceptor does not seem to modify the risk for acute myocardial infarction, but may modify the risk for hypertension in sib-pairs from families with type 2 diabetes, Cardiovasc. Diabetol., 2003, vol. 24, no. 2, pp. 15—21. https://doi.org/10.1186/1475-2840-2-15
Lima, J.J., Feng, H., Duckworth, L., et al., Association analyses of adrenergic receptor polymorphisms with obesity and metabolic alterations, Metabolism, 2007, vol. 56, no. 6, pp. 757—765. https://doi.org/10.1016/j.metabol.2007.01.007
Salimi, S., Firoozrai, M., Nourmohammadi, I., et al., Endothelial nitric oxide synthase gene intron 4 VNTR polymorphism in patients with coronary artery disease in Iran, Indian J. Med. Res., 2006, vol. 124, no. 6, pp. 683—688.
Lindpaintner, K., Pfeffer, M.A., Kreutz, R., et al., A prospective evaluation of an angiotensin-converting enzyme gene polymorphism and the risk of ischemic heart disease, N. Engl. J. Med., 1995, vol. 332, no. 11, pp. 706—711. https://doi.org/10.1056/NEJM199503163321103
Fujimura, H., Kawasaki, T., Sakata, T., et al., Common C677T polymorphism in the methylenetetrahydrofolate reductase gene increases the risk for deep vein thrombosis in patients with predisposition of thrombophilia, Thromb. Res., 2000, vol. 98, no. 1, pp. 1—8. https://doi.org/10.1016/s0049-3848(99)00231-5
Wang, Y., Kikuchi, S., Suzuki, H., et al., Endothelial nitric oxide synthase gene polymorphism in intron 4 affects the progression of renal failure in non-diabetic renal diseases, Nephrol. Dial. Transplant., 1999, vol. 14, no. 12, pp. 2898—2902. https://doi.org/10.1093/ndt/14.12.2898
Avila-Vanzzini, N., Posadas-Romero, C., Gonzalez-Salazar, M., et al., The ACE I/D polymorphism is associated with nitric oxide metabolite and blood pressure levels in healthy Mexican men, Arch. Cardiol. Mex., 2015, vol. 85, no. 2, pp. 105—110. https://doi.org/10.1016/j.acmx.2014.12.005
Rolim, T., Cancino, J., and Zucolotto, V., A nanostructured genosensor for the early diagnosis of systemic arterial hypertension, Biomed. Microdevices, 2015, vol. 17, no. 1, pp. 3—9. https://doi.org/10.1007/s10544-014-9911-z
Hu, D.C., Zhao, X.L., Shao, J.C., et al., Interaction of six candidate genes in essential hypertension, Genet. Mol. Res., 2014, vol. 13, no. 4, pp. 8385—8395. https://doi.org/10.4238/2014
Barabash, O.L., Voevoda, M.I., Artamonova, G.V., et al., Genetic determinants of hypertension in two national cohorts of Mountain Shoriya, Ter. Arkh., 2017, vol. 89, no. 9, pp. 68—77.
Andrews, R.M., Kubacka, I., Chinnery, P.F., et al., Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA, Nat. Genet., 1999, vol. 23, no. 2, p. 147.
Nei, M. and Tajima, F., DNA polymorphism detectable by restriction endonucleases, Genetics, 1981, vol. 97, no. 1, pp. 145—163.
Excoffier, L., Laval, G., and Schneider, S., Arlequin ver. 3.0: an integrated software package for population genetics data analysis, Evol. Bioinf. Online, 2005, vol. 1, pp. 47—50.
Derenko, M., Malyarchuk, B., Grzybowski, T., et al., Origin and post-glacial dispersal of mitochondrial DNA haplogroups C and D in Northern Asia, PLoS One, 2010, vol. 5, no. 12, pp. 1—9. https://doi.org/10.1371/journal.pone.0015214
Derenko, M., Malyarchuk, B., Grzybowski, T., et al., Phylogeographic analysis of mitochondrial DNA in Northern Asian populations, Am. J. Hum. Gene, 2007, vol. 81, no. 5, pp. 1025—1041. https://doi.org/10.1086/522933
Starikovskaya, E., Sukernik, R., Derbeneva, O., et al., Mitochondrial DNA diversity in indigenous populations of the southern extent of Siberia, and the origins of native American haplogroups, Ann. Hum. Genet., 2005, vol. 69, no. 1, pp. 67—89. https://doi.org/10.1046/j.1529-8817.2003.00127.x
Bermisheva, M., Tambets, K., Villems, R. and Khusnutdinova, E., Diversity of mitochondrial DNA haplotypes in ethnic populations of the Volga—Ural region of Russia, Mol. Biol. (Moscow), 2002, vol. 36, pp. 990—1001.
Volodko, N.V., Starikovskaya, E.B., Mazunin, I.O., et al., Mitochondrial genome diversity in arctic Siberians, with particular reference to the evolutionary history of Beringia and Pleistocenic peopling of the Americas, Am. J. Hum. Genet., 2008, vol. 82, no. 5, pp. 1084—1100. https://doi.org/10.1016/j.ajhg.2008.03.019
Tanaka, M., Cabrera, V.M., González, A.M., et al., Mitochondrial genome variation in Eastern Asia and the peopling of Japan, Genome Res., 2004, vol. 14, no. 10A, pp. 1832—1850. https://doi.org/10.1101/gr.2286304
Lee, H.Y., Yoo, J.E., Park, M.J., et al., Mitochondrial DNA control region sequences in Koreans: identification of useful variable sites and phylogenetic analysis for mtDNA data quality control, Int. J. Legal Med., 2006, vol. 120, no. 1, pp. 5—14. https://doi.org/10.1007/s00414-005-0005-6
Kivisild, T., Tolk, H.-V., Parik, Y., et al., The emerging limbs and twigs of the East Asian mtDNA tree, Mol. Biol. Evol., 2002, vol. 19, no. 10, pp. 1737—1751. https://doi.org/10.1093/oxfordjournals.molbev.a003996
Yao, Y.-G., Kong, Q.-P., Bandelt, H.-J., et al., Phylogeographic differentiation of mitochondrial DNA in Han Chinese, Am. J. Hum. Genet., 2002, vol. 70, no. 3, pp. 635—651. https://doi.org/10.1086/338999
Yao, Y.G., Kong, Q.P., Wang, C.Y., et al., Different matrilineal contributions to genetic structure of ethnic groups in the Silk Road region in China, Mol. Biol. Evol., 2004, vol. 21, no. 12, pp. 2265—2280. https://doi.org/10.1093/molbev/msh238
Metspalu, M., Kivisild, T., Metspalu, E., et al., Most of the extant mtDNA boundaries in south and southwest Asia were likely shaped during the initial settlement of Eurasia by anatomically modern humans, BMC Genet., 2004, vol. 5, no. 26, pp. 1—25. https://doi.org/10.1186/1471-2156-5-26
Wen, B., Li, H., Gao, S., et al., Genetic structure of Hmong-Mien speaking populations in East Asia as revealed by mtDNA lineages, Mol. Biol. Evol., 2005, vol. 22, no. 3, pp. 725—734. https://doi.org/10.1093/molbev/msi055
Fedorova, S.A., Bermisheva, M.A., Villems, R., et al., Analysis of mitochondrial DNA haplotypes in Yakut population, Mol. Biol. (Moscow), 2003, vol. 37, pp. 643—653.
Gubina, M.A., Girgol’kau, L.A., Babenko, V.N., et al., Mitochondrial DNA polymorphism in populations of aboriginal residents of the Far East, Russ. J. Genet., 2013, vol. 49, no. 7, pp. 751—764. https://doi.org/10.1134/S1022795413070065
Goltsova, T.V., Osipova, L.P., Zhadanov, S.I., and Villems, R., The effect of marriage migration on the genetic structure of the Taimyr Nganasan population: genealogical analysis inferred from mtDNA markers, Russ. J. Genet., 2005, vol. 41, no. 7, pp. 954—965.
Derbeneva, O., Starikovskaya, E., Wallace, D., and Sukernik, R., Traces of early Eurasians in the Mansis of Northwest Siberia revealed by mitochondrial DNA analysis, Am. J. Hum. Genet., 2002, vol. 70, no. 4, pp. 1009—1014. https://doi.org/10.1086/339524
Kong, Q.P., Yao, Y.G., Sun, C., et al., Phylogeny of East Asian mitochondrial DNA lineages inferred from complete sequences, Am. J. Hum. Genet., 2003, vol. 73, no. 3, pp. 671—676. https://doi.org/10.1086/377718
Bermisheva, M.A., Kutuev, I.A., Spitsyn, V.A., et al., Analysis of mitochondrial DNA variation in the population of Oroks, Russ. J. Genet., 2005, vol. 41, no. 1, pp. 66—71. https://doi.org/10.1007/s11177-005-0069-x
Lappalainen, T., Laitinen, V., and Salmela, E., Migration waves to the Baltic Ea region, Ann. Hum. Genet., 2008, vol. 72, no. 3, pp. 337—348. https://doi.org/10.1111/j.1469-1809.2007.00429.x
Richards, M.B., Macaulay, V., Hickey, E., et al., Tracing European founder lineages in the Near Eastern mtDNA pool, Am. J. Hum. Genet., 2000, vol. 67, no. 5, pp. 1251—1276.
Sukernik, R.I., Volodko, N.V., Mazunin, I.O., et al., Mitochondrial genome diversity in the Tubalar, Even, and Ulchi: contribution to prehistory of native Siberians and their affinities to native Americans, Am. J. Phys. Anthropol., 2012, vol. 148, no. 1, pp. 123—138. https://doi.org/10.1002/ajpa.22050
Xu, K. and Hu, S., Population data of mitochondrial DNA HVS-I and HVS-II sequences for 208 Henan Han Chines, Legal Med., 2015, vol. 17, no. 4, pp. 287—294. 1016/j.legalmed.2015.02.003
Simoni, L., Calafell, F., Pettener, D., et al., Geographic patterns of mtDNA diversity in Europe, Am. J. Hum. Genet., 2000, vol. 66, no. 1, pp. 262—278. https://doi.org/10.1086/302706
Naumova, O.Yu., Rychkov, S.Iu., Morozova, I.Iu., et al., Mitochondrial DNA diversity in Siberian Tatars of the Tobol—Irtysh basin, Russ. J. Genet., 2008, vol. 44, no. 2, pp. 257—268.
Gubina, M.A., Damba, L.D., Babenko, B.N., et al., The haplotypes variety mtDNA and Y-chromosome in populations of Altai—Sayan region, Russ. J. Genet., 2013, vol. 49, no. 3, pp. 1—16.
Helgason, A., Sigurdaroottir, S., Gulcher, J., et al., mtDNA and the origin of the Icelanders: deciphering signals of recent population history, Am. J. Hum. Genet., 2000, vol. 66, no. 3, pp. 999—1016. https://doi.org/10.1086/302816
Derenko, M., Maliarchuk, B., Denisova, G., et al., Molecular genetic differentiation of ethnic populations in Southern and Eastern Siberia based on mitochondrial DNA polymorphism, Russ. J. Genet., 2002, vol. 38, no. 10, pp. 1409—1416.
Pimenoff, V., Cjmas, D., Palo, J., et al., Northwest Siberian Khanty and Mansi in the junction of West and East Eurasian gene pools as revealed by uniparental markers, Eur. J. Hum. Genet., 2008, vol. 16, no. 10, pp. 1254—1264. https://doi.org/10.1038/ejhg.2008.101
Kolman, C. and Sambuughin, N., Mitochondrial DNA analysis of Mongolian populations and implications for the origin of New World founders, Genetics, 1996, vol. 142, no. 4, pp. 1321—1334.
Lutz, S., Weisser, H., Heizmann, J., et al., Location and frequency of polymorphic positions in the mtDNA control region of individuals from Germany, Int. J. Legal Med., 1998, vol. 111, no. 2, pp. 67—77. https://doi.org/10.1007/s004140050117
Pfeiffer, H., Brinkmann, B., Huhne, J., et al., Expanding the forensic German mitochondrial DNA control region database: genetic diversity as a function of sample size and microgeography, Int. J. Legal Med., 1999, vol. 112, no. 5, pp. 291—298. https://doi.org/10.1007/s004140050252
Lahermo, P., Sajantila, A., Sistonen, P., et al., The genetic relationship between the Finns and the Finnish Saami (Lapps): analysis of nuclear DNA and mtDNA, Am. J. Hum. Genet., 1996, vol. 58, no. 6, pp. 1309—1322.
Kittles, R., Bergen, A., Urbane, K., et al., Autosomal, mitochondrial, and Y Chromosome DNA variation in Finland: evidence for a male specific bottleneck, Am. J. Hum. Genet., 1999, vol. 108, no. 4, pp. 381—399. https://doi.org/10.1002/(SICI)1096-8644(199904)108:4<381::AID-AJPA1>3.0.CO;2-5
Derbeneva, O.A., Starikovskaya, E.B., Volodko, N.V., et al., Mitochondrial DNA variation in the Kets and Nganasans and its implications for the initial peopling of Northern Eurasia, Russ. J. Genet., 2002, vol. 38, no. 11, pp. 1316—1321. https://doi.org/10.1023/A:1021111530654
Pereira, L., Prata, M.J., and Amorim, A., Diversity of mtDNA lineages in Portugal not a genetic edge of european variation, Ann. Hum. Genet., 2000, vol. 64, no. 6, pp. 491—506. https://doi.org/10.1046/j.1469-1809.2000.6460491.x
Saillard, J., Evseva, I., Tranebjaerg, L., and Norby, S., Mitochondrial DNA Diversity among Nenets, Archaeogenetics: DNA and the Population Prehistory of Europe, Renfrew, C. and Boyle, K., Eds., Cambridge: Cambridge Univ. Press, 2000, pp. 255—258.
Danser, A.H., Schalekamp, M.A., Bax, W.A., et al., Angiotensin-converting enzyme in the human heart: effect of the deletion/insertion polymorphism, Circulation, 1995, vol. 92, no. 6, pp. 1387—1388. https://doi.org/10.1161/01.cir.92.6.1387
Shulutko, B.I., Arterial’naya gipertenziya (Arterial Hypertension), St. Petersburg: Sotis, 2001, pp. 98—108.
Fox, C.S., Heard-Costa, N.L., Vasan, R.S., et al., Genomewide linkage analysis of weight change in the Framingham heart study, J. Clinl. Endocrinol. Metab. 2005, vol. 15, no. 6, pp. 3197—3201. https://doi.org/10.1161/01.cir.92.6.1387
Karaulova, Yu.L., Pavlova, A.V. Moiseev, V.S., et al., The study of clinical and genetic determinants of left ventricular hypertrophy in patients with arterial hypertension and hypertrophic cardiomyopathy, Prakt. Vrach, 2006, vol. 1, no. 2, pp. 58—63.
Bimbaev, A.B.-Zh., Bairova, T.A., Shadrina, N.A. and Khoikova, O.U., Systemic hypertension in children from different ethnic groups with glomerulonephritis and its association with angiotensin-converting enzyme gene polymorphism, Byull. Vost. Sib. Nauchn. Tsentra Sib. Otd. Ross. Akad. Med. Nauk, 2005, no. 5(43), pp. 128—133.
Goncharova, L.N., Sergutova, N.P., and Kuzovenkova, O.N., Central hemodynamic indices and the renin—angiotensin system genes polymorphisms in patients with arterial hypertension in the Republic of Mordovia, Med. Vestn. Bashkortostana, 2011, vol. 6, no. 2, pp. 357—361.
Ichihara, S., Yamada, Y., Fujimura, T., et al., Association of a polymorphism of the endothelial constitutive nitric oxide synthase gene with myocardial infarction in the Japanese population, Am. J. Cardiol., 1998, vol. 1, no. 1, pp. 3—6. https://doi.org/10.1016/s0002-9149(97)10806-2
Ignarro, L.J., Biological actions and properties of endothelium-derived nitric oxide formed and released from artery and vein, Circ. Res., 1989, vol. 65, no. 1, pp. 1—21. https://doi.org/10.1161/01.res.65.1.1
Bairova, T.A., Dolgikh, V.V., Bimbaev, A.B.-Zh., et al., Association of endothelial nitric oxide synthase gene polymorphism with essential arterial hypertension in populations of Eastern Siberia, Byull. Vost.-Sib. Nauchn. Tsentra Sib. Otd. Russ. Akad. Med. Nauk, 2007, no. 3(65), pp. 64—65.
Granath, B., Taylor, R.R., van Bockxmeer, F.M., and Mamotte, C.D., Lack of evidence for association between endothelial nitric oxide synthase gene polymorphisms and coronary artery disease in the Australian Caucasian population, J. Cardiovasc. Risk, 2001, vol. 8, no. 4, pp. 235—241. https://doi.org/10.1177/174182670100800408
Milutinović, A. and Hruskovicova, H., The eNOS gene polymorphism does not have a major impact on lipid parameters and premature coronary artery disease in Slovene men (Caucasians), Folia Biol. (Praha), 2005, vol. 51, no. 2, pp. 47—49.
Kim, I.J., Bae, J., Lim, S.W., et al., Influence of endothelial nitric oxide synthase gene polymorphisms (786TNC, 4a4b, 894GNT) in Korean patients with coronary artery disease, Thrombosis Res., 2007, vol. 119, no. 5, pp. 579—585. https://doi.org/10.1016/j.thromres.2006.06.005
Suzuki, N., Matsunaga, T., Nagasumi, K., et al., Alpha(2B)-adrenergic receptor deletion polymorphism associates with autonomic nervous system activity in young healthy Japanese, J. Clin. Endocrinol. Metab., 2003, vol. 88, no. 3, pp. 1184—1187. https://doi.org/10.1210/jc.2002-021190
Snapir, A., Heinonen, P., Tuomainen, T.P., et al., An insertion/deletion polymorphism in the alpha2B-adrenergic receptor gene is a novel genetic risk factor for acute coronary events, J. Am. Coll. Cardiol., 2001, vol. 37, no. 6, pp. 1516—1522. https://doi.org/10.1016/s0735-1097(01)01201-3
Weisberg, I., Tran, P., Christensen, B., et al., A second genetic polymorphism in methylenetetrahydrofolate reductase (MTHFR) associated with decreased enzyme activity, Mol. Genet. Metab., 1998, vol. 64, no. 3, pp. 169—172. https://doi.org/10.1006/mgme.1998.2714
Dobrolyubov, A.S., Lipin, M.A., Polyakov, A.V., and Fetisova, I.N., Polymorphisms in genes involved in folate metabolism and human diseases, Vestn. Nov. Med. Tekhnol., 2006, vol. 13, no. 4, pp. 71—73.
Botto, L.D. and Yang, Q., 5,10-Methylenetetrahydrofolate reductase gene variants and congenital anomalies: a HuGE review, Am. J. Epidemiol., 2000, vol. 151, no. 9, pp. 862—877. https://doi.org/10.1093/oxfordjournals.aje.a010290
Kalashnikova, E.A. and Kokarovtseva, S.N., Hereditary risk factors for thrombophilia and pregnancy loss in women from the Russian population, Med. Genet., 2005, vol. 4, no. 8, pp. 386—391.
Al-Shahrani, H., Al-Dabbagh, N., Al-Dohayan, N., et al., Association of the methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism with primary glaucoma in Saudi population, BMC Ophthalmol., 2016, vol. 16, no. 1, pp. 156—163. https://doi.org/10.1186/s12886-016-0337-7
Gupta, S., Bhaskar, P.K., and Bhardwaj, R., MTHFR C677T predisposes to POAG but not to PACG in a North Indian population: a case control study, PLoS One, 2014, vol. 9, no. 7. e103063. https://doi.org/10.1371/journal.pone.0103063
Micheal, S., Qamar, R., Akhtar, F., et al., MTHFR gene C677T and A1298C polymorphisms and homocysteine levels in primary open angle and primary closed angle glaucoma, Mol. Vis., 2009, no. 15, pp. 2268—2278.
Nilforoushan, N., Aghapour, S., Raoofian, R., et al., Lack of association between the C677T single nucleotide polymorphism of the MTHFR gene and glaucoma in Iranian patients, Acta Med. Iranica, 2012, vol. 50, no. 3, pp. 208—212.
Zhang, L. and Chen, B., Correlation between MTHFR polymorphisms and glaucoma: a meta-analysis, Mol. Genet. Genomic Med., 2019, no. 4, pp. 1—7. e5387.https://doi.org/10.1002/mgg3.538
Lou, L., Wang, J., and Wang, J., Genetic associations between transcription factor 7 Like 2 rs7903146 polymorphism and type 2 diabetes mellitus: a meta-analysis of 115,809 subjects, Diabetol. Metab. Syndr., 2019, vol. 11, no. 56, p. 3. https://doi.org/10.1186/s13098-019-0451-9
Samoilenko, V.A., Petrova, N.V., Babadzhanova, G.Yu., et al., The role of the modifier gene TCF7L2 in the onset of diabetes in adult patients with cystic fibrosis, Pul’monologiya, 2014, no. 2, pp. 33—39.
Avzaletdinova, D.Sh., Sharipova, L.F., Kochetova, O.V., et al., Analysis of associations of the TCF7L2 gene rs7903146 polymorphism with type 2 diabetes mellitus in the Tatar ethnic group living in Bashkortostan, Sakharnyi Diabet, 2016, vol. 19, no. 2, pp. 119—124.
Naik, M.U., Caplan, J.L., and Naik, U.P., Junctional adhesion molecule-A suppresses platelet integrin αIIbβ3 signaling by recruiting Csk to the integrin-c-Src complex, Blood, 2014, vol. 123, no. 9, pp. 1393—1402. https://doi.org/10.1182/blood-2013-04-496232
Tintori, C., Fallacara, A.L., Radi, M., et al., Combining X-ray crystallography and molecular modeling toward the optimization of pyrazolo[3,4-d]pyrimidines as potent c-Src inhibitors active in vivo against neuroblastoma, J. Med. Chem., 2015, vol. 58, no. 1, pp. 347—361. https://doi.org/10.1021/jm5013159
Meng, Y. and Roux, B., Locking the active conformation of c-Src kinase through the phosphorylation of the activation loop, J. Mol. Biol., 2014, vol. 426, no. 2, pp. 423—435. https://doi.org/10.1016/j.jmb.2013.10.001
Korneeva, E.V., Voevoda, M.I., Semaev, S.E., and Maksimov, V.N., Association of the CSK gene rs1378942 polymorphism with arterial hypertension in young residents with metabolic syndrome living under northern conditions, Sovrem. Probl. Nauki Obraz., 2019, no. 2. http://science-education.ru/ru/article/view?id=28646.
Platunova, I.M., Nikulina, S.Yu., Chernova, A.A., et al., The role of the CSK gene in the development of ischemic stroke, Sovrem. Probl. Nauki Obraz., 2016, no. 6. http://www.science-education.ru/ru/article/view.
Park, Y.M., Kwock, C.K., Kim, K., et al., Interaction between single nucleotide polymorphism and urinary sodium, potassium, and sodium-potassium ratio on the risk of hypertension in Korean, Nutrients, 2017, vol. 9, no. 3, pp. 235—249. https://doi.org/10.3390/nu9030235
ACKNOWLEDGMENTS
We thank the Paleoethnology Research Center (Moscow) and personally D.V. Pezhemsky for participation in organizing and conducting the expedition in 2016.
Funding
This study was supported by the Budget Project no. 0259-2021-0014, by the grant from Moscow State University for support of the leading scientific schools of Moscow State University “Depositary of Living Systems of Moscow University” in the framework of the Development Program of Moscow State University, and by the Russian Foundation for Basic Research (grant no. 20-011-00408) in the framework of the research project “Evolutionary Continuum of the Genus Homo.”
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest. The authors declare that they have no conflicts of interest.
Statement of compliance with standards of research involving humans as subjects. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.
Informed consent was obtained from all individual participants involved in the study.
Additional information
Translated by N. Maleeva
Rights and permissions
About this article
Cite this article
Gubina, M.A., Babenko, V.N., Batsevich, V.A. et al. Polymorphism of Mitochondrial DNA and Six Nuclear Genes in the Amur Evenk Population. Russ J Genet 58, 42–56 (2022). https://doi.org/10.1134/S1022795422010033
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S1022795422010033

