Skip to main content

Advertisement

Log in

Polymorphism of Mitochondrial DNA and Six Nuclear Genes in the Amur Evenk Population

  • HUMAN GENETICS
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The polymorphism of six nuclear genes, ACE (I/D, rs1799752), NOS3 (4b/4a, rs61722009), ADRA2B (I/D, rs28365031), MTHFR (С677Т, rs1801133), TCF7L2 (rs7903146), and CSK (rs1378942), as well as mitochondrial DNA, was examined in the population of Amur Evenks. It was demonstrated that among Evenks, Eastern Eurasian mtDNA haplogroups with the predominance of two of them, C and D (58%), were the most common. These haplogroups are most typical of the populations of North Asia and Siberia. Among West Eurasian haplogroups, the most common is haplogroup H (15%). The lowest statistically significant differences in mtDNA were found between Evenks, Turks, and Samoyeds, and the largest differences were with Finno-Ugric populations. The observed distribution of frequencies of loci for four genes in the studied population did not differ from the theoretically expected under the Hardy–Weinberg law, with the exception of TCF7L2 and CSK loci. Statistically significant association for gametic disequilibrium was observed between four pairs of genes (ACE and MTHFR, ACE and TCF7L2, NOS3 and CSK, ADRA2B and MTHFR). The distribution of allele associations at six loci was assessed using the maximum likelihood method. The number of associated alleles was calculated for each pseudohaplotype. It was demonstrated that the number of associated alleles proportionally increased with the decrease of pseudohaplotype frequency (R2 = 0.5, R = 0.7, d.f. = 16, P < 0.001). It is suggested that the data obtained are characteristic not only of the studied population and also may reflect such processes as gametic disequilibrium (meiotic drive).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Derevyanko, A.P., Volkov, P.V., and Li, Kh., Selemdzhinskaya pozdnepaleoliticheskaya kul’tura (Selemdzhin Late Paleolithic Culture), Novosibirsk: Inst. Arkheol. Etnografii Sib. Otd. Russ. Akad. Nauk, 1998.

    Google Scholar 

  2. Nesterov, S.P., Narody Priamur’ya v epokhu rannego srednevekov’ya (Peoples of the Amur River Region in the Early Middle Age), Novosibirsk: Inst. Arkheol. Etnografii Sib. Otd. Russ. Akad. Nauk, 1998.

    Google Scholar 

  3. All-Russian Population Census, 2010.

  4. Zabiyako, A.P., Anikhovskii, S.E., Voronkova, E.A., et al., Evenki Priamur’ya: olennaya tropa istorii i kul’tury (Evenks of the Amur River Region: Reindeer Trail of History and Culture), Zabiyako, A.P., Ed., Blagoveshchensk, 2012.

    Google Scholar 

  5. Istoriya i kul’tura dal’nevostochnykh evenkov: istoriko-etnograficheskie ocherki (History and Culture of the Far Eastern Evenks: Historical and Ethnographic Essays), Turaev, V.A., Ed., St. Petersburg: Nauka, 2010.

    Google Scholar 

  6. Debets, G.F., Antropologicheskie issledovaniya v Kamchatskoi oblasti (Anthropological Research in Kamchatka Oblast), vol. XVII of Trudy Instituta Etnografii Akad. Nauk SSSR (Proceedings of Institute for Ethnography USSR Academy of Sciences), 1951.

  7. Levin, M.G., Etnicheskaya antropologiya i problemy etnogeneza narodov Dal’nego Vostoka (Ethnic Anthropology and Problems of Ethnogenesis of the Peoples of the Far East), vol. XXXVI of Trudy Instituta Etnografii Akad. Nauk SSSR (Proceedings of Institute for Ethnography USSR Academy of Sciences), 1958.

  8. Baranov, V.S., Ivashchenko, T.E., and Baranova, E.V., Geneticheskii passport—osnova individual’noi i prediktivnoi meditsiny (Genetic Pass: the Basis of Personalized and Predictive Medicine), St. Petersburg: Nauka, 2009.

    Google Scholar 

  9. Gorbunova, V.N., Genetics and epigenetics of syntropic diseases, Ekol. Genet., 2010, vol. 8, no. 4, pp. 39—43.

    Google Scholar 

  10. Snapir, A., Scheinin, M., Groop, L.C., and Orho-Melander, M., The insertion/deletion variation in the α2B-adrenoceptor does not seem to modify the risk for acute myocardial infarction, but may modify the risk for hypertension in sib-pairs from families with type 2 diabetes, Cardiovasc. Diabetol., 2003, vol. 24, no. 2, pp. 15—21. https://doi.org/10.1186/1475-2840-2-15

    Article  Google Scholar 

  11. Lima, J.J., Feng, H., Duckworth, L., et al., Association analyses of adrenergic receptor polymorphisms with obesity and metabolic alterations, Metabolism, 2007, vol. 56, no. 6, pp. 757—765. https://doi.org/10.1016/j.metabol.2007.01.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Salimi, S., Firoozrai, M., Nourmohammadi, I., et al., Endothelial nitric oxide synthase gene intron 4 VNTR polymorphism in patients with coronary artery disease in Iran, Indian J. Med. Res., 2006, vol. 124, no. 6, pp. 683—688.

    CAS  PubMed  Google Scholar 

  13. Lindpaintner, K., Pfeffer, M.A., Kreutz, R., et al., A prospective evaluation of an angiotensin-converting enzyme gene polymorphism and the risk of ischemic heart disease, N. Engl. J. Med., 1995, vol. 332, no. 11, pp. 706—711. https://doi.org/10.1056/NEJM199503163321103

    Article  CAS  PubMed  Google Scholar 

  14. Fujimura, H., Kawasaki, T., Sakata, T., et al., Common C677T polymorphism in the methylenetetrahydrofolate reductase gene increases the risk for deep vein thrombosis in patients with predisposition of thrombophilia, Thromb. Res., 2000, vol. 98, no. 1, pp. 1—8. https://doi.org/10.1016/s0049-3848(99)00231-5

    Article  CAS  PubMed  Google Scholar 

  15. Wang, Y., Kikuchi, S., Suzuki, H., et al., Endothelial nitric oxide synthase gene polymorphism in intron 4 affects the progression of renal failure in non-diabetic renal diseases, Nephrol. Dial. Transplant., 1999, vol. 14, no. 12, pp. 2898—2902. https://doi.org/10.1093/ndt/14.12.2898

    Article  CAS  PubMed  Google Scholar 

  16. Avila-Vanzzini, N., Posadas-Romero, C., Gonzalez-Salazar, M., et al., The ACE I/D polymorphism is associated with nitric oxide metabolite and blood pressure levels in healthy Mexican men, Arch. Cardiol. Mex., 2015, vol. 85, no. 2, pp. 105—110. https://doi.org/10.1016/j.acmx.2014.12.005

    Article  PubMed  Google Scholar 

  17. Rolim, T., Cancino, J., and Zucolotto, V., A nanostructured genosensor for the early diagnosis of systemic arterial hypertension, Biomed. Microdevices, 2015, vol. 17, no. 1, pp. 3—9. https://doi.org/10.1007/s10544-014-9911-z

    Article  CAS  PubMed  Google Scholar 

  18. Hu, D.C., Zhao, X.L., Shao, J.C., et al., Interaction of six candidate genes in essential hypertension, Genet. Mol. Res., 2014, vol. 13, no. 4, pp. 8385—8395. https://doi.org/10.4238/2014

    Article  CAS  PubMed  Google Scholar 

  19. Barabash, O.L., Voevoda, M.I., Artamonova, G.V., et al., Genetic determinants of hypertension in two national cohorts of Mountain Shoriya, Ter. Arkh., 2017, vol. 89, no. 9, pp. 68—77.

    Google Scholar 

  20. Andrews, R.M., Kubacka, I., Chinnery, P.F., et al., Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA, Nat. Genet., 1999, vol. 23, no. 2, p. 147.

  21. Nei, M. and Tajima, F., DNA polymorphism detectable by restriction endonucleases, Genetics, 1981, vol. 97, no. 1, pp. 145—163.

    Article  CAS  Google Scholar 

  22. Excoffier, L., Laval, G., and Schneider, S., Arlequin ver. 3.0: an integrated software package for population genetics data analysis, Evol. Bioinf. Online, 2005, vol. 1, pp. 47—50.

    Article  CAS  Google Scholar 

  23. Derenko, M., Malyarchuk, B., Grzybowski, T., et al., Origin and post-glacial dispersal of mitochondrial DNA haplogroups C and D in Northern Asia, PLoS One, 2010, vol. 5, no. 12, pp. 1—9. https://doi.org/10.1371/journal.pone.0015214

    Article  CAS  Google Scholar 

  24. Derenko, M., Malyarchuk, B., Grzybowski, T., et al., Phylogeographic analysis of mitochondrial DNA in Northern Asian populations, Am. J. Hum. Gene, 2007, vol. 81, no. 5, pp. 1025—1041. https://doi.org/10.1086/522933

    Article  CAS  Google Scholar 

  25. Starikovskaya, E., Sukernik, R., Derbeneva, O., et al., Mitochondrial DNA diversity in indigenous populations of the southern extent of Siberia, and the origins of native American haplogroups, Ann. Hum. Genet., 2005, vol. 69, no. 1, pp. 67—89. https://doi.org/10.1046/j.1529-8817.2003.00127.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bermisheva, M., Tambets, K., Villems, R. and Khusnutdinova, E., Diversity of mitochondrial DNA haplotypes in ethnic populations of the Volga—Ural region of Russia, Mol. Biol. (Moscow), 2002, vol. 36, pp. 990—1001.

    Article  CAS  Google Scholar 

  27. Volodko, N.V., Starikovskaya, E.B., Mazunin, I.O., et al., Mitochondrial genome diversity in arctic Siberians, with particular reference to the evolutionary history of Beringia and Pleistocenic peopling of the Americas, Am. J. Hum. Genet., 2008, vol. 82, no. 5, pp. 1084—1100. https://doi.org/10.1016/j.ajhg.2008.03.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tanaka, M., Cabrera, V.M., González, A.M., et al., Mitochondrial genome variation in Eastern Asia and the peopling of Japan, Genome Res., 2004, vol. 14, no. 10A, pp. 1832—1850. https://doi.org/10.1101/gr.2286304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lee, H.Y., Yoo, J.E., Park, M.J., et al., Mitochondrial DNA control region sequences in Koreans: identification of useful variable sites and phylogenetic analysis for mtDNA data quality control, Int. J. Legal Med., 2006, vol. 120, no. 1, pp. 5—14. https://doi.org/10.1007/s00414-005-0005-6

    Article  PubMed  Google Scholar 

  30. Kivisild, T., Tolk, H.-V., Parik, Y., et al., The emerging limbs and twigs of the East Asian mtDNA tree, Mol. Biol. Evol., 2002, vol. 19, no. 10, pp. 1737—1751. https://doi.org/10.1093/oxfordjournals.molbev.a003996

    Article  CAS  PubMed  Google Scholar 

  31. Yao, Y.-G., Kong, Q.-P., Bandelt, H.-J., et al., Phylogeographic differentiation of mitochondrial DNA in Han Chinese, Am. J. Hum. Genet., 2002, vol. 70, no. 3, pp. 635—651. https://doi.org/10.1086/338999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yao, Y.G., Kong, Q.P., Wang, C.Y., et al., Different matrilineal contributions to genetic structure of ethnic groups in the Silk Road region in China, Mol. Biol. Evol., 2004, vol. 21, no. 12, pp. 2265—2280. https://doi.org/10.1093/molbev/msh238

    Article  CAS  PubMed  Google Scholar 

  33. Metspalu, M., Kivisild, T., Metspalu, E., et al., Most of the extant mtDNA boundaries in south and southwest Asia were likely shaped during the initial settlement of Eurasia by anatomically modern humans, BMC Genet., 2004, vol. 5, no. 26, pp. 1—25. https://doi.org/10.1186/1471-2156-5-26

    Article  CAS  Google Scholar 

  34. Wen, B., Li, H., Gao, S., et al., Genetic structure of Hmong-Mien speaking populations in East Asia as revealed by mtDNA lineages, Mol. Biol. Evol., 2005, vol. 22, no. 3, pp. 725—734. https://doi.org/10.1093/molbev/msi055

    Article  CAS  PubMed  Google Scholar 

  35. Fedorova, S.A., Bermisheva, M.A., Villems, R., et al., Analysis of mitochondrial DNA haplotypes in Yakut population, Mol. Biol. (Moscow), 2003, vol. 37, pp. 643—653.

    Article  CAS  Google Scholar 

  36. Gubina, M.A., Girgol’kau, L.A., Babenko, V.N., et al., Mitochondrial DNA polymorphism in populations of aboriginal residents of the Far East, Russ. J. Genet., 2013, vol. 49, no. 7, pp. 751—764. https://doi.org/10.1134/S1022795413070065

    Article  CAS  Google Scholar 

  37. Goltsova, T.V., Osipova, L.P., Zhadanov, S.I., and Villems, R., The effect of marriage migration on the genetic structure of the Taimyr Nganasan population: genealogical analysis inferred from mtDNA markers, Russ. J. Genet., 2005, vol. 41, no. 7, pp. 954—965.

    Article  CAS  Google Scholar 

  38. Derbeneva, O., Starikovskaya, E., Wallace, D., and Sukernik, R., Traces of early Eurasians in the Mansis of Northwest Siberia revealed by mitochondrial DNA analysis, Am. J. Hum. Genet., 2002, vol. 70, no. 4, pp. 1009—1014. https://doi.org/10.1086/339524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kong, Q.P., Yao, Y.G., Sun, C., et al., Phylogeny of East Asian mitochondrial DNA lineages inferred from complete sequences, Am. J. Hum. Genet., 2003, vol. 73, no. 3, pp. 671—676. https://doi.org/10.1086/377718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bermisheva, M.A., Kutuev, I.A., Spitsyn, V.A., et al., Analysis of mitochondrial DNA variation in the population of Oroks, Russ. J. Genet., 2005, vol. 41, no. 1, pp. 66—71. https://doi.org/10.1007/s11177-005-0069-x

    Article  CAS  Google Scholar 

  41. Lappalainen, T., Laitinen, V., and Salmela, E., Migration waves to the Baltic Ea region, Ann. Hum. Genet., 2008, vol. 72, no. 3, pp. 337—348. https://doi.org/10.1111/j.1469-1809.2007.00429.x

    Article  CAS  PubMed  Google Scholar 

  42. Richards, M.B., Macaulay, V., Hickey, E., et al., Tracing European founder lineages in the Near Eastern mtDNA pool, Am. J. Hum. Genet., 2000, vol. 67, no. 5, pp. 1251—1276.

    Article  CAS  Google Scholar 

  43. Sukernik, R.I., Volodko, N.V., Mazunin, I.O., et al., Mitochondrial genome diversity in the Tubalar, Even, and Ulchi: contribution to prehistory of native Siberians and their affinities to native Americans, Am. J. Phys. Anthropol., 2012, vol. 148, no. 1, pp. 123—138. https://doi.org/10.1002/ajpa.22050

    Article  PubMed  Google Scholar 

  44. Xu, K. and Hu, S., Population data of mitochondrial DNA HVS-I and HVS-II sequences for 208 Henan Han Chines, Legal Med., 2015, vol. 17, no. 4, pp. 287—294. 1016/j.legalmed.2015.02.003

  45. Simoni, L., Calafell, F., Pettener, D., et al., Geographic patterns of mtDNA diversity in Europe, Am. J. Hum. Genet., 2000, vol. 66, no. 1, pp. 262—278. https://doi.org/10.1086/302706

    Article  CAS  PubMed  Google Scholar 

  46. Naumova, O.Yu., Rychkov, S.Iu., Morozova, I.Iu., et al., Mitochondrial DNA diversity in Siberian Tatars of the Tobol—Irtysh basin, Russ. J. Genet., 2008, vol. 44, no. 2, pp. 257—268.

    Article  Google Scholar 

  47. Gubina, M.A., Damba, L.D., Babenko, B.N., et al., The haplotypes variety mtDNA and Y-chromosome in populations of Altai—Sayan region, Russ. J. Genet., 2013, vol. 49, no. 3, pp. 1—16.

    Article  Google Scholar 

  48. Helgason, A., Sigurdaroottir, S., Gulcher, J., et al., mtDNA and the origin of the Icelanders: deciphering signals of recent population history, Am. J. Hum. Genet., 2000, vol. 66, no. 3, pp. 999—1016. https://doi.org/10.1086/302816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Derenko, M., Maliarchuk, B., Denisova, G., et al., Molecular genetic differentiation of ethnic populations in Southern and Eastern Siberia based on mitochondrial DNA polymorphism, Russ. J. Genet., 2002, vol. 38, no. 10, pp. 1409—1416.

    CAS  Google Scholar 

  50. Pimenoff, V., Cjmas, D., Palo, J., et al., Northwest Siberian Khanty and Mansi in the junction of West and East Eurasian gene pools as revealed by uniparental markers, Eur. J. Hum. Genet., 2008, vol. 16, no. 10, pp. 1254—1264. https://doi.org/10.1038/ejhg.2008.101

    Article  CAS  PubMed  Google Scholar 

  51. Kolman, C. and Sambuughin, N., Mitochondrial DNA analysis of Mongolian populations and implications for the origin of New World founders, Genetics, 1996, vol. 142, no. 4, pp. 1321—1334.

    Article  CAS  Google Scholar 

  52. Lutz, S., Weisser, H., Heizmann, J., et al., Location and frequency of polymorphic positions in the mtDNA control region of individuals from Germany, Int. J. Legal Med., 1998, vol. 111, no. 2, pp. 67—77. https://doi.org/10.1007/s004140050117

    Article  CAS  PubMed  Google Scholar 

  53. Pfeiffer, H., Brinkmann, B., Huhne, J., et al., Expanding the forensic German mitochondrial DNA control region database: genetic diversity as a function of sample size and microgeography, Int. J. Legal Med., 1999, vol. 112, no. 5, pp. 291—298. https://doi.org/10.1007/s004140050252

    Article  CAS  PubMed  Google Scholar 

  54. Lahermo, P., Sajantila, A., Sistonen, P., et al., The genetic relationship between the Finns and the Finnish Saami (Lapps): analysis of nuclear DNA and mtDNA, Am. J. Hum. Genet., 1996, vol. 58, no. 6, pp. 1309—1322.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Kittles, R., Bergen, A., Urbane, K., et al., Autosomal, mitochondrial, and Y Chromosome DNA variation in Finland: evidence for a male specific bottleneck, Am. J. Hum. Genet., 1999, vol. 108, no. 4, pp. 381—399. https://doi.org/10.1002/(SICI)1096-8644(199904)108:4<381::AID-AJPA1>3.0.CO;2-5

    Article  CAS  Google Scholar 

  56. Derbeneva, O.A., Starikovskaya, E.B., Volodko, N.V., et al., Mitochondrial DNA variation in the Kets and Nganasans and its implications for the initial peopling of Northern Eurasia, Russ. J. Genet., 2002, vol. 38, no. 11, pp. 1316—1321. https://doi.org/10.1023/A:1021111530654

    Article  CAS  Google Scholar 

  57. Pereira, L., Prata, M.J., and Amorim, A., Diversity of mtDNA lineages in Portugal not a genetic edge of european variation, Ann. Hum. Genet., 2000, vol. 64, no. 6, pp. 491—506. https://doi.org/10.1046/j.1469-1809.2000.6460491.x

    Article  CAS  PubMed  Google Scholar 

  58. Saillard, J., Evseva, I., Tranebjaerg, L., and Norby, S., Mitochondrial DNA Diversity among Nenets, Archaeogenetics: DNA and the Population Prehistory of Europe, Renfrew, C. and Boyle, K., Eds., Cambridge: Cambridge Univ. Press, 2000, pp. 255—258.

    Google Scholar 

  59. Danser, A.H., Schalekamp, M.A., Bax, W.A., et al., Angiotensin-converting enzyme in the human heart: effect of the deletion/insertion polymorphism, Circulation, 1995, vol. 92, no. 6, pp. 1387—1388. https://doi.org/10.1161/01.cir.92.6.1387

    Article  CAS  PubMed  Google Scholar 

  60. Shulutko, B.I., Arterial’naya gipertenziya (Arterial Hypertension), St. Petersburg: Sotis, 2001, pp. 98—108.

    Google Scholar 

  61. Fox, C.S., Heard-Costa, N.L., Vasan, R.S., et al., Genomewide linkage analysis of weight change in the Framingham heart study, J. Clinl. Endocrinol. Metab. 2005, vol. 15, no. 6, pp. 3197—3201. https://doi.org/10.1161/01.cir.92.6.1387

    Article  Google Scholar 

  62. Karaulova, Yu.L., Pavlova, A.V. Moiseev, V.S., et al., The study of clinical and genetic determinants of left ventricular hypertrophy in patients with arterial hypertension and hypertrophic cardiomyopathy, Prakt. Vrach, 2006, vol. 1, no. 2, pp. 58—63.

    Google Scholar 

  63. Bimbaev, A.B.-Zh., Bairova, T.A., Shadrina, N.A. and Khoikova, O.U., Systemic hypertension in children from different ethnic groups with glomerulonephritis and its association with angiotensin-converting enzyme gene polymorphism, Byull. Vost. Sib. Nauchn. Tsentra Sib. Otd. Ross. Akad. Med. Nauk, 2005, no. 5(43), pp. 128—133.

  64. Goncharova, L.N., Sergutova, N.P., and Kuzovenkova, O.N., Central hemodynamic indices and the renin—angiotensin system genes polymorphisms in patients with arterial hypertension in the Republic of Mordovia, Med. Vestn. Bashkortostana, 2011, vol. 6, no. 2, pp. 357—361.

    Google Scholar 

  65. Ichihara, S., Yamada, Y., Fujimura, T., et al., Association of a polymorphism of the endothelial constitutive nitric oxide synthase gene with myocardial infarction in the Japanese population, Am. J. Cardiol., 1998, vol. 1, no. 1, pp. 3—6. https://doi.org/10.1016/s0002-9149(97)10806-2

    Article  Google Scholar 

  66. Ignarro, L.J., Biological actions and properties of endothelium-derived nitric oxide formed and released from artery and vein, Circ. Res., 1989, vol. 65, no. 1, pp. 1—21. https://doi.org/10.1161/01.res.65.1.1

    Article  CAS  PubMed  Google Scholar 

  67. Bairova, T.A., Dolgikh, V.V., Bimbaev, A.B.-Zh., et al., Association of endothelial nitric oxide synthase gene polymorphism with essential arterial hypertension in populations of Eastern Siberia, Byull. Vost.-Sib. Nauchn. Tsentra Sib. Otd. Russ. Akad. Med. Nauk, 2007, no. 3(65), pp. 64—65.

  68. Granath, B., Taylor, R.R., van Bockxmeer, F.M., and Mamotte, C.D., Lack of evidence for association between endothelial nitric oxide synthase gene polymorphisms and coronary artery disease in the Australian Caucasian population, J. Cardiovasc. Risk, 2001, vol. 8, no. 4, pp. 235—241. https://doi.org/10.1177/174182670100800408

    Article  CAS  PubMed  Google Scholar 

  69. Milutinović, A. and Hruskovicova, H., The eNOS gene polymorphism does not have a major impact on lipid parameters and premature coronary artery disease in Slovene men (Caucasians), Folia Biol. (Praha), 2005, vol. 51, no. 2, pp. 47—49.

    Google Scholar 

  70. Kim, I.J., Bae, J., Lim, S.W., et al., Influence of endothelial nitric oxide synthase gene polymorphisms (786TNC, 4a4b, 894GNT) in Korean patients with coronary artery disease, Thrombosis Res., 2007, vol. 119, no. 5, pp. 579—585. https://doi.org/10.1016/j.thromres.2006.06.005

    Article  CAS  Google Scholar 

  71. Suzuki, N., Matsunaga, T., Nagasumi, K., et al., Alpha(2B)-adrenergic receptor deletion polymorphism associates with autonomic nervous system activity in young healthy Japanese, J. Clin. Endocrinol. Metab., 2003, vol. 88, no. 3, pp. 1184—1187. https://doi.org/10.1210/jc.2002-021190

    Article  CAS  PubMed  Google Scholar 

  72. Snapir, A., Heinonen, P., Tuomainen, T.P., et al., An insertion/deletion polymorphism in the alpha2B-adrenergic receptor gene is a novel genetic risk factor for acute coronary events, J. Am. Coll. Cardiol., 2001, vol. 37, no. 6, pp. 1516—1522. https://doi.org/10.1016/s0735-1097(01)01201-3

    Article  CAS  PubMed  Google Scholar 

  73. Weisberg, I., Tran, P., Christensen, B., et al., A second genetic polymorphism in methylenetetrahydrofolate reductase (MTHFR) associated with decreased enzyme activity, Mol. Genet. Metab., 1998, vol. 64, no. 3, pp. 169—172. https://doi.org/10.1006/mgme.1998.2714

    Article  CAS  PubMed  Google Scholar 

  74. Dobrolyubov, A.S., Lipin, M.A., Polyakov, A.V., and Fetisova, I.N., Polymorphisms in genes involved in folate metabolism and human diseases, Vestn. Nov. Med. Tekhnol., 2006, vol. 13, no. 4, pp. 71—73.

    Google Scholar 

  75. Botto, L.D. and Yang, Q., 5,10-Methylenetetrahydrofolate reductase gene variants and congenital anomalies: a HuGE review, Am. J. Epidemiol., 2000, vol. 151, no. 9, pp. 862—877. https://doi.org/10.1093/oxfordjournals.aje.a010290

    Article  CAS  PubMed  Google Scholar 

  76. Kalashnikova, E.A. and Kokarovtseva, S.N., Hereditary risk factors for thrombophilia and pregnancy loss in women from the Russian population, Med. Genet., 2005, vol. 4, no. 8, pp. 386—391.

    Google Scholar 

  77. Al-Shahrani, H., Al-Dabbagh, N., Al-Dohayan, N., et al., Association of the methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism with primary glaucoma in Saudi population, BMC Ophthalmol., 2016, vol. 16, no. 1, pp. 156—163. https://doi.org/10.1186/s12886-016-0337-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Gupta, S., Bhaskar, P.K., and Bhardwaj, R., MTHFR C677T predisposes to POAG but not to PACG in a North Indian population: a case control study, PLoS One, 2014, vol. 9, no. 7. e103063. https://doi.org/10.1371/journal.pone.0103063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Micheal, S., Qamar, R., Akhtar, F., et al., MTHFR gene C677T and A1298C polymorphisms and homocysteine levels in primary open angle and primary closed angle glaucoma, Mol. Vis., 2009, no. 15, pp. 2268—2278.

  80. Nilforoushan, N., Aghapour, S., Raoofian, R., et al., Lack of association between the C677T single nucleotide polymorphism of the MTHFR gene and glaucoma in Iranian patients, Acta Med. Iranica, 2012, vol. 50, no. 3, pp. 208—212.

    CAS  Google Scholar 

  81. Zhang, L. and Chen, B., Correlation between MTHFR polymorphisms and glaucoma: a meta-analysis, Mol. Genet. Genomic Med., 2019, no. 4, pp. 1—7. e5387.https://doi.org/10.1002/mgg3.538

  82. Lou, L., Wang, J., and Wang, J., Genetic associations between transcription factor 7 Like 2 rs7903146 polymorphism and type 2 diabetes mellitus: a meta-analysis of 115,809 subjects, Diabetol. Metab. Syndr., 2019, vol. 11, no. 56, p. 3. https://doi.org/10.1186/s13098-019-0451-9

    Article  CAS  Google Scholar 

  83. Samoilenko, V.A., Petrova, N.V., Babadzhanova, G.Yu., et al., The role of the modifier gene TCF7L2 in the onset of diabetes in adult patients with cystic fibrosis, Pul’monologiya, 2014, no. 2, pp. 33—39.

  84. Avzaletdinova, D.Sh., Sharipova, L.F., Kochetova, O.V., et al., Analysis of associations of the TCF7L2 gene rs7903146 polymorphism with type 2 diabetes mellitus in the Tatar ethnic group living in Bashkortostan, Sakharnyi Diabet, 2016, vol. 19, no. 2, pp. 119—124.

    Google Scholar 

  85. Naik, M.U., Caplan, J.L., and Naik, U.P., Junctional adhesion molecule-A suppresses platelet integrin αIIbβ3 signaling by recruiting Csk to the integrin-c-Src complex, Blood, 2014, vol. 123, no. 9, pp. 1393—1402. https://doi.org/10.1182/blood-2013-04-496232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Tintori, C., Fallacara, A.L., Radi, M., et al., Combining X-ray crystallography and molecular modeling toward the optimization of pyrazolo[3,4-d]pyrimidines as potent c-Src inhibitors active in vivo against neuroblastoma, J. Med. Chem., 2015, vol. 58, no. 1, pp. 347—361. https://doi.org/10.1021/jm5013159

    Article  CAS  PubMed  Google Scholar 

  87. Meng, Y. and Roux, B., Locking the active conformation of c-Src kinase through the phosphorylation of the activation loop, J. Mol. Biol., 2014, vol. 426, no. 2, pp. 423—435. https://doi.org/10.1016/j.jmb.2013.10.001

    Article  CAS  PubMed  Google Scholar 

  88. Korneeva, E.V., Voevoda, M.I., Semaev, S.E., and Maksimov, V.N., Association of the CSK gene rs1378942 polymorphism with arterial hypertension in young residents with metabolic syndrome living under northern conditions, Sovrem. Probl. Nauki Obraz., 2019, no. 2. http://science-education.ru/ru/article/view?id=28646.

  89. Platunova, I.M., Nikulina, S.Yu., Chernova, A.A., et al., The role of the CSK gene in the development of ischemic stroke, Sovrem. Probl. Nauki Obraz., 2016, no. 6. http://www.science-education.ru/ru/article/view.

  90. Park, Y.M., Kwock, C.K., Kim, K., et al., Interaction between single nucleotide polymorphism and urinary sodium, potassium, and sodium-potassium ratio on the risk of hypertension in Korean, Nutrients, 2017, vol. 9, no. 3, pp. 235—249. https://doi.org/10.3390/nu9030235

    Article  CAS  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank the Paleoethnology Research Center (Moscow) and personally D.V. Pezhemsky for participation in organizing and conducting the expedition in 2016.

Funding

This study was supported by the Budget Project no. 0259-2021-0014, by the grant from Moscow State University for support of the leading scientific schools of Moscow State University “Depositary of Living Systems of Moscow University” in the framework of the Development Program of Moscow State University, and by the Russian Foundation for Basic Research (grant no. 20-011-00408) in the framework of the research project “Evolutionary Continuum of the Genus Homo.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Gubina.

Ethics declarations

Conflict of interest. The authors declare that they have no conflicts of interest.

Statement of compliance with standards of research involving humans as subjects. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent was obtained from all individual participants involved in the study.

Additional information

Translated by N. Maleeva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gubina, M.A., Babenko, V.N., Batsevich, V.A. et al. Polymorphism of Mitochondrial DNA and Six Nuclear Genes in the Amur Evenk Population. Russ J Genet 58, 42–56 (2022). https://doi.org/10.1134/S1022795422010033

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795422010033

Keywords: