Skip to main content
Log in

Adaptive Changes in Fatty Acid Desaturation Genes in Indigenous Populations of Northeast Siberia

  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Since ancient times, meat and fat of seals and whales, rich in omega-3 polyunsaturated fatty acids, prevailed in the traditional “Arctic” diet of the indigenous people of the far Northeast of Siberia (Eskimos, Chukchi, Koryaks). This was reflected in the peculiarities of lipid metabolism of northern aborigines—for example, among them, variants of the genes for fatty acid desaturases (FADS1 and FADS2) encoding enzymes with reduced activity are predominantly widespread. In this study, we investigated the distribution of 22 bp insertion of the FADS2 gene (rs66698963), which affects the expression of the FADS1 gene, in populations of the northeastern (Koryaks, Evens) and southern (Buryats) parts of Siberia. The Koryaks had a minimum frequency of 22 bp insertions (5.6%)—almost an order of magnitude less frequently than Buryats (45.3%). In addition, a high frequency (10.9%) of nonsense mutation in the CYB5R2 gene (position 7 694 023 of chromosome 11) was detected in the Koryaks. This mutation leads to premature termination of the synthesis of NADH cytochrome b5 reductase, which is necessary for the functioning of desaturases encoded by FADS genes. The revealed genetic features of the indigenous population of the Far North are explained by long-term adaptation to a traditional diet very rich in lipids, which is a reason that prevents the need for additional synthesis of polyunsaturated fatty acids using fatty acid desaturases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Marquardt, A., Stöhr, H., White, K., and Weber, B.H., cDNA cloning, genomic structure, and chromosomal localization of three members of the human fatty acid desaturase family, Genomics, 2000, vol. 66, pp. 175–183. https://doi.org/10.1006/geno.2000.6196

    Article  CAS  PubMed  Google Scholar 

  2. Los’, D.A., Structure, regulation of expression and functioning of fatty acid desaturases, Usp. Biol. Khim., 2001, vol. 41, pp. 163–198.

    Google Scholar 

  3. Malyarchuk, B.A., Long-term gene—environment interactions and genetics of metabolic disorders in aboriginal populations of Northeast Asia, Ecol. Genet., 2018, vol. 16, no. 2, pp. 30–35. https://doi.org/10.17816/ecogen16230-35

    Article  Google Scholar 

  4. Ameur, A., Enroth, S., Johansson, A., et al., Genetic adaptation of fatty-acid metabolism: a human specific haplotype increasing the biosynthesis of long-chain omega-3 and omega-6 fatty acids, Am. J. Hum. Genet., 2012, vol. 90, pp. 809–820. https://doi.org/10.1016/j.ajhg.2012.03.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Reardon, H.T., Zhang, J., Kothapalli, K.S., et al., Insertion-deletions in a FADS2 intron 1 conserved regulatory locus control expression of fatty acid desaturases 1 and 2 and modulate response to simvastatin, Prostaglandins, Leukotrienes Essent. Fatty Acids, 2012, vol. 87, pp. 25–33. https://doi.org/10.1016/j.plefa.2012.04.011

    Article  CAS  Google Scholar 

  6. Voruganti, V.S., Higgins, P.B., Ebbesson, S.O., et al., Variants in CPT1A, FADS1, and FADS2 are associated with higher levels of estimated plasma and erythrocyte delta-5 desaturases in Alaskan Eskimos, Front. Genet., 2012, vol. 3, p. 86. eCollection 2012.https://doi.org/10.3389/fgene.2012.00086

  7. Mathieson, I., Lazaridis, I., Rohland, N., et al., Genome-wide patterns of selection in 230 ancient Eurasians, Nature, 2015, vol. 528, pp. 499–503. https://doi.org/10.1038/nature16152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ye, K., Gao, F., Wang, D., et al., Dietary adaptation of FADS genes in Europe varied across time and geography, Nat. Ecol. Evol., 2017, vol. 1, p. 0167. https://doi.org/10.1038/s41559-017-0167

  9. Mathieson, S. and Mathieson, I., FADS1 and the timing of human adaptation to agriculture, Mol. Biol. Evol., 2018, vol. 35, pp. 2957–2970. https://doi.org/10.1093/molbev/msy180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mathias, R.A., Fu, W., Akey, J.M., et al., Adaptive evolution of the FADS gene cluster within Africa, PLoS One, 2012, vol. 7. e44926. https://doi.org/10.1371/journal.pone.0044926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Amorim, C.E., Nunes, K., Meyer, D., et al., Genetic signature of natural selection in first Americans, Proc. Natl. Acad. Sci. U.S.A., 2017, vol. 114, pp. 2195–2199. https://doi.org/10.1073/pnas.1620541114

    Article  CAS  PubMed  Google Scholar 

  12. Malyarchuk, B.A. and Derenko, M.V., Polymorphism of polyunsaturated fatty acid metabolism genes (FADS1 and FADS2) in the indigenous population of Siberia, Vestn. Sev.-Vost. Nauchn. Tsentra Dal’nevost. Otd. Ross. Akad. Nauk, 2018, no. 3, pp. 106–111.

  13. Fumagalli, M., Moltke, I., Grarup, N., et al., Greenlandic Inuit show genetic signatures of diet and climate adaptation, Science, 2015, vol. 349, pp. 1343–1347. https://doi.org/10.1126/science.aab2319

    Article  CAS  PubMed  Google Scholar 

  14. Harris, D.H., Ruczinski, I., Yanek, L.R., et al., Evolution of hominin polyunsaturated fatty acid metabolism: from Africa to the New World, Genome Biol. Evol., 2019, vol. 11, pp. 1417–1430. https://doi.org/10.1093/gbe/evz071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cardona, A., Pagani, L., Antao, T., et al., Genome-wide analysis of cold adaption in indigenous Siberian populations, PLoS One, 2014, vol. 9. e98076. eCollection 2014https://doi.org/10.1371/journal.pone.0098076

  16. Clemente, F.J., Cardona, A., Inchley, C.E., et al., A selective sweep on a deleterious mutation in the CPT1A gene in Arctic populations, Am. J. Hum. Genet., 2014, vol. 95, pp. 584–589. https://doi.org/10.1016/j.ajhg.2014.09.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hsieh, P., Hallmark, B., Watkins, J., et al., Exome sequencing provides evidence of polygenic adaptation to a fat-rich animal diet in indigenous Siberian populations, Mol. Biol. Evol., 2017, vol. 34, pp. 2913–2926. https://doi.org/10.1093/molbev/msx226

    Article  CAS  PubMed  Google Scholar 

  18. Reynolds, A.W., Mata-Míguez, J., Miró-Herrans, A., et al., Comparing signals of natural selection between three indigenous North American populations, Proc. Natl. Acad. Sci. U.S.A., 2019, vol. 116, pp. 9312–9317. https://doi.org/10.1073/pnas.1819467116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mathieson, I., Limited evidence for selection at the FADS locus in Native American populations, Mol. Biol. Evol., 2020, vol. 37, pp. 2029–2033. https://doi.org/10.1093/molbev/msaa064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kothapalli, K.S.D., Ye, K., Gadgil, M.S., et al., Positive selection on a regulatory insertion—deletion polymorphism in FADS2 influences apparent endogenous synthesis of arachidonic acid, Mol. Biol. Evol., 2016, vol. 33, pp. 1726–1739. https://doi.org/10.1093/molbev/msw049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Moltke, I., Grarup, N., Jørgensen, M.E., et al., A common Greenlandic TBC1D4 variant confers muscle insulin resistance and type 2 diabetes, Nature, 2014, vol. 512, pp. 190–193. https://doi.org/10.1038/nature13425

    Article  CAS  PubMed  Google Scholar 

  22. Grarup, N., Moltke, I., Andersen, M.K., et al., Loss-of-function variants in ADCY3 increase risk of obesity and type 2 diabetes, Nat. Genet., 2018, vol. 50, pp. 172–174.https://doi.org/10.1038/s41588-017-0022-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Greenberg, C.R., Dilling, L.A., Thompson, G.R., et al., The paradox of the carnitine palmitoyltransferase type Ia P479L variant in Canadian aboriginal populations, Mol. Genet. Metab., 2009, vol. 96, pp. 201–207. https://doi.org/10.1016/j.ymgme.2008.12.018

    Article  CAS  PubMed  Google Scholar 

  24. Zhou, S., Xiong, L., Xie, P., et al., Increased missense mutation burden of fatty acid metabolism related genes in Nunavik Inuit population, PLoS One, 2015, vol. 10. e0128255. https://doi.org/10.1371/journal.pone.0128255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pagani, L., Lawson, D.J., Jagoda, E., et al., Genomic analyses inform on migration events during the peopling of Eurasia, Nature, 2016, vol. 538, pp. 238–242. https://doi.org/10.1038/nature19792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mörseburg, A., Investigating the role of demography and selection in genome scale patterns of common and rare variant diversity in humans, Ph. D. Thesis, Cambridge: Univ. Cambridge, 2018.

  27. Untergasser, A., Cutcutache, I., Koressaar, T., et al., Primer3—new capabilities and interfaces, Nucleic Acids Res., 2012, vol. 40. e115. https://doi.org/10.1093/nar/gks596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tamura, K., Peterson, D., Peterson, N., et al., MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods, Mol. Biol. Evol., 2011, vol. 28, pp. 2731–2739. https://doi.org/10.1093/molbev/msr121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Excoffier, L., Laval, G., and Schneider, S., Arlequin (version 3.0): an integrated software package for population genetics data analysis, Evol. Bioinf. Online, 2007, vol. 1, pp. 47–50.

    Google Scholar 

  30. Vasil’evskii, R.S., Proiskhozhdenie i drevnyaya kul’tura koryakov (Origin and Ancient Culture of the Koryaks), Novosibirsk: Nauka, 1971.

  31. Narody Severo-Vostoka Sibiri (Peoples of the North-East of Siberia), Bat’yanova, E.P. and Turaev, V.A., Eds., Moscow: Nauka, 2010.

  32. Seo, J.S., Ju, Y.S., Lee, W.C., et al., The transcriptional landscape and mutational profile of lung adenocarcinoma, Genome Res., 2012, vol. 22, pp. 2109–2119. https://doi.org/10.1101/gr.145144.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Martinelli, N., Girelli, D., Malerba, G., et al., FADS genotypes and desaturase activity estimated by the ratio of arachidonic acid to linoleic acid are associated with inflammation and coronary artery disease, Am. J. Clin. Nutr., 2008, vol. 88, pp. 941–949. https://doi.org/10.1093/ajcn/88.4.941

    Article  CAS  PubMed  Google Scholar 

  34. Lattka, E., Illig, T., Heinrich, J., and Koletzko, B., Do FADS genotypes enhance our knowledge about fatty acid related phenotypes?, Clin. Nutr., 2010, vol. 29, pp. 277–287. https://doi.org/10.1016/j.clnu.2009.11.005

    Article  CAS  PubMed  Google Scholar 

  35. Chen, Y., Estampador, A.C., Keller, M., et al., The combined effects of FADS gene variation and dietary fats in obesity-related traits in a population from the far north of Sweden: the GLACIER study, Int. J. Obes. (London), 2019, vol. 43, pp. 808–820. https://doi.org/10.1038/s41366-018-0112-3

    Article  CAS  Google Scholar 

  36. Del Gobbo, L.C., Imamura, F., Aslibekyan, S., et al., ω-3 polyunsaturated fatty acid biomarkers and coronary heart disease: pooling project of 19 cohort studies, JAMA Int. Med., 2016, vol. 176, pp. 1155–1166. https://doi.org/10.1001/jamainternmed.2016.2925

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. A. Malyarchuk.

Ethics declarations

Conflict of interest. The authors declare that they have no conflict of interest.

Statement of compliance with standards of research involving humans as subjects. All procedures performed in a study involving people comply with the ethical standards of the institutional and/or national committee for research ethics and the 1964 Helsinki Declaration and its subsequent changes or comparable ethical standards.

Informed voluntary consent was obtained from each of the participants.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malyarchuk, B.A., Derenko, M.V. & Denisova, G.A. Adaptive Changes in Fatty Acid Desaturation Genes in Indigenous Populations of Northeast Siberia. Russ J Genet 57, 1461–1466 (2021). https://doi.org/10.1134/S1022795421120103

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795421120103

Keywords:

Navigation