Skip to main content
Log in

Phenotypically Unstable Mutations as Markers of Chromosomal Rearrangements Involving DNA Transposons

  • REVIEWS AND THEORETICAL ARTICLES
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The review analyzed the validity of using unstable alleles of Drosophila melanogaster genes to assess the rate of movement of mobile genetic elements by the frequency of phenotype change. Several examples show that the instability of alleles with introduced transposons is determined to a greater degree by recombination between them than by the true movement of transposons with the participation of transposase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Nuzhdin, S.V., Pasyukova, E.G., and Mackay, T.F., Accumulation of transposable elements in laboratory lines of Drosophila melanogaster, Genetica, 1997, vol. 100, nos. 1—3, pp. 167–175.

    Article  CAS  Google Scholar 

  2. Maside, X., Assimacopoulos, S., and Charlesworth, B., Rates of movement of transposable elements on the second chromosome of Drosophila melanogaster, Genet. Res., 2000, vol. 75, no. 3, pp. 275–284. https://doi.org/10.1017/s0016672399004474

    Article  CAS  PubMed  Google Scholar 

  3. Maside, X., Assimacopoulos, S., and Charlesworth, B., Genome-wide estimates of transposable element insertion and deletion rates in Drosophila melanogaster, Genome Biol. Evol., 2017, vol. 9, no. 5, pp. 1329–1340. https://doi.org/10.1093/gbe/evx050

    Article  CAS  Google Scholar 

  4. Eggleston, W.B., Johnson-Schlitz, D.M., and Engels, W.R., P-M hybrid dysgenesis does not mobilize other transposable element families in D. melanogaster, Nature, 1988, vol. 331, no. 6154, pp. 368–370. https://doi.org/10.1038/331368a0

  5. Eggleston, W.B., Rim, N.R., and Lim, J.K., Molecular characterization of hobo-mediated inversions in Drosophila melanogaster, Genetics, 1996, vol. 144, no. 2, pp. 647–656.

    Article  CAS  Google Scholar 

  6. Khurana, J.S., Wang, J., Xu, J., et al., Adaptation to P element transposon invasion in Drosophila melanogaster, Cell, 2011, vol. 147, no. 7, pp. 1551–1563. https://doi.org/10.1016/j.cell.2011.11.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Novak, P., Neumann, P., and Macas, J., Graph-based clustering and characterization of repetitive sequences in next-generation sequencing data, BMC Bioinf., 2010, vol. 11, p. 378. https://doi.org/10.1186/1471-2105-11-378

  8. Goubert, C., Modolo, L., Vieira, C., et al., De novo assembly and annotation of the Asian tiger mosquito (Aedes albopictus) repeatome with dnaPipeTE from raw genomic reads and comparative analysis with the yellow fever mosquito (Aedes aegypti), Genome Biol. Evol., 2015, vol. 7, pp. 1192–1205. https://doi.org/10.1093/gbe/evv050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mohamed, M., Dang, N.T., Ogyama, Y., et al., A transposon story: from TE content to TE dynamic invasion of Drosophila genomes using the single-molecule sequencing technology from Oxford nanopore, Cells, 2020, vol. 9, no. 8. E1776. https://doi.org/10.3390/cells9081776

  10. Treiber, C.D. and Waddell, S., Resolving the prevalence of somatic transposition in Drosophila, Elife, 2017, vol. 6. e28297. https://doi.org/10.7554/eLife.28297

  11. Roiha, H., Rubin, G.M., and O’Hare, K., P element insertions and rearrangements at the singed locus of Drosophila melanogaster, Genetics, 1988, vol. 119, pp. 73–83.

    Article  Google Scholar 

  12. Lim, J.K. and Simmons, M.J., Gross chromosome rearrangements mediated by transposable elements in Drosophila melanogaster, BioEssays, 1994, vol. 16, no. 4, pp. 269–275. https://doi.org/10.1002/bies.950160410

    Article  CAS  PubMed  Google Scholar 

  13. Dolgin, E.S. and Charlesworth, B., The effects of recombination rate on the distribution and abundance of transposable elements, Genetics, 2008, vol. 178, no. 4, pp. 2169–2177. https://doi.org/10.1534/genetics.107.082743

    Article  PubMed  PubMed Central  Google Scholar 

  14. Paterson, J., Simmons, M.J., and O’Hare, K., Transcription of the singed-weak mutation of Drosophila melanogaster: elimination of P-element sequences by RNA splicing and repression of singed transcription in a P genetic background, Mol. Genet. Genomics, 2007, vol. 278, pp. 53–64. https://doi.org/10.1007/s00438-007-0227-z123

    Article  CAS  PubMed  Google Scholar 

  15. Ota, R. and Kobayashi, S., Myc plays an important role in Drosophila P-M hybrid dysgenesis to eliminate germline cells with genetic damage, Commun. Biol., 2020, vol. 3, p. 185. https://doi.org/10.1038/s42003-020-0923-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. McClintock, B., The origin and behavior of mutable loci in maize, Proc. Natl. Acad. Sci. U.S.A., 1950, vol. 36, no. 6, pp. 344–355. https://doi.org/10.1073/pnas.36.6.344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. McClintock, B., Chromosome organization and genic expression, Cold Spring Harbor Symp. Quant. Biol., 1951, vol. 16, pp. 13–47.

    Article  CAS  Google Scholar 

  18. Kunze, R. and Weil, C.F., The hAT and CACTA superfamilies of plant transposons, in Mobile DNA II, Craig, N.L., Craigie, R., Gellert, M., et al., Eds., Washington: ASM, 2002, pp. 565–610.

    Google Scholar 

  19. McBlane, J.F., van Gent, D.C., Ramsden, D.A., et al., Cleavage at a V(D)J recombination signal requires only RAG1 and RAG2 proteins and occurs in two steps, Cell, 1995, vol. 83, pp. 387–395. https://doi.org/10.1016/0092-8674(95)90116-7

    Article  CAS  PubMed  Google Scholar 

  20. Coupland, G., Plum, C., Chatterjee, S., et al., Sequences near the termini are required for transposition of the maize transposon Ac in transgenic tobacco plants, Proc. Natl. Acad. Sci. U.S.A., 1989, vol. 86, pp. 9385–9388. https://doi.org/10.1073/pnas.86.23.9385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Vollbrecht, E., Duvick, J., Schares, J.P., et al., Genome-wide distribution of transposed dissociation elements in maize plant cell, Plant Cell, 2010, vol. 22, no. 6, pp. 1667–1685. https://doi.org/10.1105/tpc.109.073452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Weil, C.F. and Wessler, S.R., Molecular evidence that chromosome breakage by Ds elements is caused by aberrant transposition, Plant Cell, 2010, vol. 22, no. 6, pp. 1667–1685. https://doi.org/10.1105/tpc.109.073452

    Article  CAS  Google Scholar 

  23. Fujimoto, S., Matsunaga, S., and Murata, M., Mapping of T-DNA and Ac/Ds by TAIL-PCR to analyze chromosomal rearrangements, Methods Mol. Biol., 2016, vol. 1469, pp. 207–216. https://doi.org/10.1007/978-1-4939-4931-1_17

    Article  CAS  PubMed  Google Scholar 

  24. Bai, L. and Brutnell, T.P., The activator/dissociation transposable elements comprise a two-component gene regulatory switch that controls endogenous gene expression in maize, Genetics, 2011, vol. 187, no. 3, pp. 749–759. https://doi.org/10.1534/genetics.110.124149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Xuan, Y.H., Peterson, T., and Han, C.D., Generation and analysis of transposon Ac/Ds-induced chromosomal rearrangements in rice plants, Methods Mol. Biol., 2016, vol. 1469, pp. 49–61. https://doi.org/10.1007/978-1-4939-4931-1_4

    Article  CAS  PubMed  Google Scholar 

  26. Lazarow, K., Doll, M.L., and Kunze, R., Molecular biology of maize Ac/Ds elements: an overview, Methods Mol. Biol., 2013, vol. 1057, pp. 59–82. https://doi.org/10.1007/978-1-62703-568-2_5

    Article  CAS  PubMed  Google Scholar 

  27. Mielich, K., Shtifman-Segal, E., Golz, J.C., et al., Maize transposable elements Ac/Ds as insertion mutagenesis tools in Candida albicans, Genes, Genomes, Genet., (Bethesda), 2018, vol. 8, no. 4, pp. 1139–1145. https://doi.org/10.1534/g3.117.300388

  28. Puchta, H. and Fauser, F., Gene targeting in plants: 25 years later, Int. J. Dev. Biol., 2013, vol. 57, nos. 6–8, pp. 629–637. https://doi.org/10.1387/ijdb.130194hp

    Article  CAS  PubMed  Google Scholar 

  29. Zakharov, I.K., Ivannikov, A.V., Skibitskii, E.S., et al., Genetic properties of alleles from genes on the X-chromosome isolated from natural Drosophila melanogaster populations during mutational bursts, Dokl Akad Nauk, 1995, vol. 341, no. 1, pp. 126–129.

    CAS  PubMed  Google Scholar 

  30. Gracheva, E.M., Zakharov, I.K., Voloshina, M.A., et al., Mutation bursts of the yellow gene in a natural Drosophila melanogaster population are connected with insertion of the hobo transposon, Russ. J. Genet., 1998, vol. 34, no. 4, pp. 364–370.

    CAS  Google Scholar 

  31. Zakharenko, L.P., Zakharov, I.K., Romanova, O.A., et al., “Mode for mutation” in the natural population of Drosophila melanogaster from Uman is caused by distribution of a hobo-induced inversion in the regulatory region of the yellow gene, Russ. J. Genet., 2000, vol. 30, no. 6, pp. 603–610.

    Google Scholar 

  32. Zakharenko, L.P., Zakharov, I.K., Voloshina, M.A., et al., The reason for the preservation of high instability at the yellow gene in Drosophila melanogaster strains isolated from the natural population of Uman’ during the “mode for mutation,” Russ. J. Genet., 2004, vol. 40, no. 3, pp. 239–243. https://doi.org/10.1023/B:RUGE.0000021622.09855.49

    Article  CAS  Google Scholar 

  33. Zakharenko, L.P., Kovalenko, L.V., Mai, S., and Zakharov, I.K., Persistent locus-specific instability of yellow2-717 and NotchUc-1 in Drosophila melanogaster coincides with hobo multiplication, Cell Tissue Biol., 2007, vol. 1, no. 6, pp. 497–502. https://doi.org/10.1134/S1990519X07060053

    Article  Google Scholar 

  34. Arensburger, P., Hice, R.H., Zhou, L., et al., Phylogenetic and functional characterization of the hAT transposon superfamily genetics, Genetics, 2011, vol. 188, no. 1, pp. 45–57. https://doi.org/10.1534/genetics.111.126813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hemmer, L.W., Dias, G.B., Smith, B., et al., Hybrid dysgenesis in Drosophila virilis results in clusters of mitotic recombination and loss-of-heterozygosity but leaves meiotic recombination unaltered, Mob. DNA, 2020, vol. 11, p. 10. https://doi.org/10.1186/s13100-020-0205-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Daniels, S.B. and Chovnick, A., P element transposition in Drosophila melanogaster: an analysis of sister-chromatid pairs and the formation of intragenic secondary insertions during meiosis, Genetics, 1993, vol. 133, no. 3, pp. 623–636.

    Article  CAS  Google Scholar 

  37. O’Hare, K., Tam, J.L., Lim, J.K., et al., Rearrangements at a hobo element inserted into the first intron of the singed gene in the unstable sn49 system of Drosophila melanogaster, Mol. Gen. Genet., 1998, vol. 257, no. 4, pp. 452–460. https://doi.org/10.1007/s004380050669

    Article  PubMed  Google Scholar 

  38. Nitasaka, E. and Yamazaki, T., Excision of one of two defective P elements as the cause of alternate mutational events (sn + and sn e) of the singed bristle allele sn w in Drosophila melanogaster, Jpn. J. Genet., 1988, vol. 63, no. 4, pp. 303–312. https://doi.org/10.1266/jjg.63.303

  39. Ortori, C.A., Chambers, D., and Brookfield, J.F., The molecular basis of instability of the singed (very weak) mutation in Drosophila melanogaster, Genet. Res., 1994, vol. 63, no. 1, pp. 19–26. https://doi.org/10.1017/s0016672300032043

    Article  CAS  PubMed  Google Scholar 

  40. Engels, W.R. and Preston, C.R., Formation of chromosome rearrangements by P factors in Drosophila, Genetics, 1984, vol. 107, no. 4, pp. 657–678.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author thanks I.K. Zakharov for valuable comments.

Funding

The work was supported by the budget project no. 0259-2021-0016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. P. Zakharenko.

Ethics declarations

The author declares no conflict of interests. This article does not contain any studies involving animals or human participants performed by the author.

Additional information

Translated by D. Novikova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zakharenko, L.P. Phenotypically Unstable Mutations as Markers of Chromosomal Rearrangements Involving DNA Transposons. Russ J Genet 57, 1253–1257 (2021). https://doi.org/10.1134/S1022795421110156

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795421110156

Keywords:

Navigation