Skip to main content
Log in

The mtDNA Control Region Variability of Microtus rossiaemeridionalis (Rodentia, Arvicolini) from Two Invasive Populations of the Russian Far East

  • ANIMAL GENETICS
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The mtDNA control region variability of Microtus rossiaemeridionalis (Rodentia, Arvicolini) from two invasive populations of the Russian Far East was studied. The results demonstrated a lower genetic diversity in the East European vole population from Sovetskaya Gavan than in the population from the city of Khabarovsk. Wright’s F statistic did not reveal any heterogeneity in the samples from these populations. It was suggested that the discovered haplotypes belong to the EU subclade of the European lineage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Hobbs, R.J., Arico, S., Aronson, J., et al., Novel ecosystems: theoretical and management aspects of the new ecological world order, Global Ecol. Biogeography, 2006, vol. 15, pp. 1–7. https://doi.org/10.1111/j.1466-822x.2006.00212.x

    Article  Google Scholar 

  2. Bellard, C., Cassey, P., and Blackburn, T.M., Alien species as a driver of recent extinctions, Biol. Lett., 2016, vol. 12, no. 2, p. 20150623. https://doi.org/10.1098/rsbl.2015.0623

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kareiva, P. and Marvier, M., What is conservation science?, BioScience, 2012, no. 62, pp. 962–969. https://doi.org/10.1525/bio.2012.62.11.5

  4. Bellard, C., Thuiller, W., Leroy, B., et al., Will climate change promote future invasions?, Global Change Biol., 2013, vol. 19, no. 12, pp. 3740–3748. https://doi.org/10.1111/gcb.12344

    Article  Google Scholar 

  5. Elton, C.S., The Ecology of Invasions by Animals and Plants, London: Methuen, 1958.

    Book  Google Scholar 

  6. Mayr, E., The nature of colonization in birds, in The Genetics of Colonizing Species, Baker, H.G. and Stebbins, G.L., Eds., New York: Academic, 1965, pp. 29–47.

    Google Scholar 

  7. Primak, R., Osnovy sokhraneniya bioraznoobraziya (Biodiversity Conservation Basics), Moscow: Nauchn. Uchebno-Metod. Tsentr, 2002.

  8. Lee, C.E., Evolutionary genetics of invasive species, Trends Ecol. Evol., 2002, vol. 17, pp. 386–391. https://doi.org/10.1016/S0169-5347(02)02554-5

    Article  Google Scholar 

  9. Mahmoudi, A., Darvish, J., Aliabadian, M., et al., New insight into the cradle of the grey voles (subgenus Microtus) inferred from mitochondrial cytochrome b sequences, Mammalia, 2017, vol. 81, no. 6, pp. 583–593. https://doi.org/10.1515/mammalia-2016-0001

    Article  Google Scholar 

  10. Holicová, T., Sedláček, F., Mácová, A., et al., New record of Microtus mystacinus in eastern Kazakhstan: phylogeographical considerations, ZooKeys, 2018, vol. 781, pp. 67–80. https://doi.org/10.3897/zookeys.781.25359

    Article  Google Scholar 

  11. Malygin, V.M., Baskevich, M.I., and Khlyap, L.A., Invasions of the common vole sibling species, Russ. J. Biol. Invasions, 2020, vol. 11, no. 1, pp. 47–65. https://doi.org/10.1134/S2075111720010087

    Article  Google Scholar 

  12. Koval’skaya, Yu.M. and Malygin, V.M., The Eastern European vole (Microtus rossiaemeridionalis) in Siberia region, Nauchn. Dokl. Vyssh. Shk., Biol. Nauki, 1985, no. 1, pp. 49–51.

  13. Mayer, M.N., Golenishchev, F.N., Radzhabli, S.I., and Sablina, O.L., Serye polevki fauny Rossii i sopredel’nykh territorii (Common Voles of the Fauna of Russia and Adjacent Territories), in Tr. Zool. Inst. Ross. Akad. Nauk, 1996, vol. 232.

  14. Yakimenko L.V. and Kryukov, A.P., The variability of Microtus rossiaemeridionalis (Rodentia, Cricetidae) karyotype in Eastern Europe, Zool. Zh., 1997, vol. 76, no. 3, pp. 375–378.

    Google Scholar 

  15. Demidovich, A.P. and Lipin, S.I., Biology of common vole in the Irkutsk oblast, Vestn. Irkutsk. Gos. S.-kh. Akad., 1997, no. 3, pp. 1–25.

  16. Gashev, S.N., Eastern European vole—a new species in the list of mammals in the Tyumen oblast, Ezhegodnik Tyumen. Obl. Kraeved. Muz., 1998, pp. 161–165.

    Google Scholar 

  17. Il’inskikh, N.N., Moskvitina, N.S., Suchkova, N.G., Il’inskikh, I.N, and Il’inskikh, E.N., Cytogenetic instability of voles and the problem of conservation of natural-focal infections in urban habitats of Tomsk city, in Fundamental’nye nauki i praktika (Fundamental Sciences and Practice), Tomsk, 2010, vol. 1, no. 3, pp. 53–54.

  18. Kartavtseva, I.V., Tiunov, M.P., Lapin, A.S., et al., Invasion of Microtus rossiaemeridionalis into the territory of the Russian Far East, Russ. J. Biol. Invasions, 2012, vol. 3, pp. 11–15. https://doi.org/10.1134/S2075111712010031

    Article  Google Scholar 

  19. Pavlova, S.V. and Tchabovsky, A.V., Presence of the 54-chromosome common vole (Mammalia) on Olkhon Island (Lake Baikal, East Siberia, Russia), and the occurrence of an unusual X-chromosome variant, Comp. Cytogenet., 2011, vol. 5, no. 5, pp. 433–440. https://doi.org/10.3897/CompCytogen.v5i5.1720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lapin, A.S., Small mammals of the southern part of the Khabarovsk krai and the Jewish Autonomous Oblast (fauna, ecology, epizootological significance), Extended Abstract of Cand. Sci. Dissertation, Dal’nevostochnyi Gosudarstvennyi Gumanitarnyi Universitet, Khabarovsk, 2013.

  21. Markova, E.A., Starikov, V.P., Yalkovskaya, L.E., et al., Molecular and cytogenetic evidence for the occurrence of the East European vole Microtus rossiaemeridionalis (Arvicolinae, Rodentia) in North of West Siberia, Dokl. Biol. Sci., 2014, vol. 455, no. 1, pp. 129–131.

    Article  CAS  PubMed  Google Scholar 

  22. Moroldoev, I.V., Sheremetyeva, I.N., and Kartavtseva, I.V., The first finding of East European vole (Microtus rossiaemeridionalis) in Buryatia, Russ. J. Biol. Invasions, 2017, vol. 8, pp. 266–271.

    Article  Google Scholar 

  23. Moroldoev, I.V., New information on mammal distribution in Buryatia, Mlekopitayushchie Rossii: faunistika i voprosy teriogeografii, (Mammals in Russia: Faunistics and Teriogeography) (Proc. Int. Meet., Rostov-on-Don, April 17—19, 2019), Moscow: KMK, 2019, pp. 178–180.

  24. Fredga, K., Jaarola, M., Ims, R.A., et al., The ‘common vole’ in Svalbard identified as Microtus epiroticus by chromosomal analysis, Polar Res., 1990, vol. 8, pp. 283–290. https://doi.org/10.3402/polar.v8i2.6818

    Article  Google Scholar 

  25. Frafjord, K., Predation on an introduced vole Microtus rossiaemeridionalis by arctic fox Alopex lagopus on Svalbard, Wildlife Biol., 2002, vol. 8, no. 1, pp. 41–47. https://doi.org/10.2981/wlb.2002.006

    Article  Google Scholar 

  26. Karaseva, E.V., Stepanova, N.V., Telitsyna, A.Yu., et al., Ecological differences between two similar species, the common vole and the Eastern European vole, in Sinantropiya gryzunov (Rodent Synanthropy), Moscow: Nauka, 1994, pp. 60–76.

  27. Tikhonova, G.N., Tikhonov, I.A., Fedorovich, E.Yu., and Davydovich, L.V., Comparative analysis of the approximate research behavior of Microtus arvalis and M. rossiaemeridionalis (Rodentia, Cricetidae) sibling species due to different propensity for synanthropy, Zool. Zh., 2005, vol. 84, no. 5, pp. 618–627.

    Google Scholar 

  28. Samye opasnye invazionnye vidy Rossii (TOP-100) (The Most Dangerous Invasive Species in Russia (TOP-100)), Dgebuadze, Yu.Yu, Petrosyan, V.G, and Khlyap, L.A., Eds., Moscow: KMK, 2018.

  29. Lapin, A.S., Vysochina, N.P., Zdanovskaya, N.I., et al., Ecology and epidemiological significance of the Eastern European vole in the south of the Khabarovsk krai, Dal’nevost. Zh. Infect. Patol., 2015, no. 27, pp. 53–56.

  30. Ahlroth, P., Alatalo, R.V., Holopainen, A., et al., Founder population size and number of source populations enhance colonization success in water striders, Oecologia, 2003, vol. 137, no. 4, pp. 617–620. https://doi.org/10.1007/s00442-003-1344-y

    Article  PubMed  Google Scholar 

  31. Bannikova, A.A., Molecular markers and the modern phylogenetics of mammals, Zh. Obshch. Biol., 2004, vol. 65, no. 4, pp. 278–305.

    CAS  PubMed  Google Scholar 

  32. Haring, E., Herzig Straschil, B., and Spitzenberger, F., Phylogenetic analysis of Alpine voles of the Microtus multiplex complex using the mitochondrial control region, J. Zool. Syst. Evol. Res., 2000, vol. 38, no. 4, pp. 231–238.

    Article  Google Scholar 

  33. Tougard, C., Renvoisé, E., Petitjean, A., and Quere, J.-P., New insight into the colonization processes of common voles: inferences from molecular and fossil evidence, PLoS One, 2008, vol. 3, no. 10. e3532. https://doi.org/10.1371/journal.pone.0003532

  34. Sibiryakov, P.A., Tovpinets, N.N., Dupal, T.A., et al., Phylogeography of the common vole Microtus arvalis, the obscurus form (Rodentia, Arvicolinae): new data on the mitochondrial DNA variability, Russ. J. Genet., 2018, vol. 54, no. 10, pp. 1185–1198. https://doi.org/10.1134/S1022795418100137

    Article  CAS  Google Scholar 

  35. Li, K., Kohn, M.H., Zhang, S., et al., The colonization and divergence patterns of Brandt’s vole (Lasiopodomys brandtii) populations reveal evidence of genetic surfing, BMC Evol. Biol., 2017, vol. 17, no. 145, pp. 2–17. https://doi.org/10.1186/s12862-017-0995-y

    Article  CAS  Google Scholar 

  36. Gao, J., Yue, L., Jiang, X., et al., Phylogeographic patterns of Microtus fortis (Arvicolinae: Rodentia) in China based on mitochondrial DNA sequences, Pakistan J. Zool., 2017, vol. 49, pp. 1185–1195. https://doi.org/10.17582/journal.pjz/2017.49.4.1185.1195

    Article  CAS  Google Scholar 

  37. Pergams, O.R.W. and Lacy, R.C., Rapid morphological and genetic change in Chicago-area Peromyscus, Mol. Ecol., 2008, vol. 17, pp. 450–463 https://doi.org/10.1111/j.1365-294X.2007.03517.x

    Article  CAS  PubMed  Google Scholar 

  38. Zvychainaya, E.Yu., Danilkin, A.A., Kholodova, M.V., et al., Analysis of the variability of the control region and cytochrome b gene of mtDNA of Capreolus pygargus Pall., Biol. Bull. (Moscow), 2011, vol. 38, no. 5, pp. 434–439. https://doi.org/10.1134/S1062359011050189

  39. Maltsev, A.N., Stakheev, V.V., Bogdanov, A.S., et al., Phylogenetic relationships of intraspecific forms of the house mouse Mus musculus: analysis of variability of the control region (D-loop) of mitochondrial DNA, Dokl. Biol. Sci., 2015, vol. 465, no. 1, pp. 285–288. https://doi.org/10.1134/S0012496615060058

    Article  CAS  PubMed  Google Scholar 

  40. Baranova, A.I., Kholodova, M.V., Davydov, A.V., et al., Polymorphism of the mtDNA control region in wild reindeer Rangifer tarandus (Mammalia: Artioodactyla) from the European part of Russia, Russ. J. Genet., 2012, vol. 48, no. 9, pp. 939–944. https://doi.org/10.1134/S1022795412090025

    Article  CAS  Google Scholar 

  41. Triant, D.A. and DeWoody, J.A., Accelerated molecular evolution in Microtus (Rodentia) as assessed via complete mitochondrial genome sequences, Genetica, 2006, no. 128, pp. 95–108. https://doi.org/10.1007/s10709-005-5538-6

  42. Triant, D.A. and DeWoody, J.A., Extensive mitochondrial DNA transfer in a rapidly evolving rodent has been mediated by independent insertion events and by duplications, Gene, 2007, no. 401, pp. 61–70. https://doi.org/10.1016/j.gene.2007.07.003

  43. Aljanabi, S.M. and Martinez, I., Universal and rapid salt extraction of high quality genomic DNA for PCR based techniques, Nucleic Acids Res., 1997, vol. 25, no. 22, pp. 4692–4693. https://doi.org/10.1093/nar/25.22.4692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sheremetyeva, I.N., Kartavtseva, I.V., Frisman, L.V., et al., Polymorphism and genetic structure of Microtus maximowiczii (Schrenck, 1858) (Rodentia, Cricetidae) from the Middle Amur River region as inferred from sequencing of the mtDNA control region, Russ. J. Genet., 2015, vol. 51, no. 10, pp. 992–999. https://doi.org/10.1134/S1022795415100166

    Article  CAS  Google Scholar 

  45. Haring, E., Sheremetyeva, I., and Kryukov, A., Phylogeny of Palearctic vole species (genus Microtus, Rodentia) based on mitochondrial sequences, Mamm. Biol., 2011, vol. 76, pp. 258–267. https://doi.org/10.1016/j.mambio.2010.04.006

    Article  Google Scholar 

  46. Hall, T.A., BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT, Nucleic Acids Symp. Ser., 1999, vol. 41, pp. 95–98. https://doi.org/10.1021/bk-1999-0734.ch008

    Article  CAS  Google Scholar 

  47. Bandelt, H.-J., Forster, P., and Röhl, A., Median-joining networks for inferring intraspecific phylogenies, Mol. Biol. Evol., 1999, vol. 16, pp. 37–48. https://doi.org/10.1093/oxfordjournals.molbev.a026036

    Article  CAS  PubMed  Google Scholar 

  48. Rozas, J., Ferrer-Mata, A., Sánchez-DelBarrio, J.C., et al., DnaSP 6: DNA sequence polymorphism analysis of large datasets, Mol. Biol. Evol., 2017, vol. 34, pp. 3299–3302. https://doi.org/10.1093/molbev/msx248

    Article  CAS  PubMed  Google Scholar 

  49. Excoffier, L., Laval, G., and Schneider, S., Arlequin ver. 3.0: an integrated software package for population genetics data analysis, Evol. Bioinf. Online, 2005, vol. 1, pp. 47–50. https://doi.org/10.1177/117693430500100003

    Article  CAS  Google Scholar 

  50. Sheremetyeva, I.N., Reasons for the genetic diversity increase among populations of common voles, Alexandromys in the Middle Amur Region, Sovremennyye problemy regional’nogo razvitiya (Modern Problems of Regional Development) (Proc. VII Allross. Nauchn. Conf., Birobidzhan, October 9—11, 2018), Frisman, E.Ya., Ed., Birobidzhan: Institut Kompleksnogo Analiza Regional’nykh Problem Dal’nevostochnogo Otdeleniya Rossiyskoy Akademii Nauk, 2018, pp. 214–216. https://doi.org/10.31433/978-5-904121-22-8-2018-214-216

  51. Cetinturk, D., Yigit, N., Colak, E., et al., Inferring phylogenetic relationships in the common vole (Microtus arvalis) based on mitochondrial and nuclear sequence diversities, Turk. J. Zool., 2021, vol. 45, pp. 117–130. https://doi.org/10.3906/zoo-2008-3

    Article  CAS  Google Scholar 

  52. Malygin, V.M., Sistematika obyknovennykh polevok (Systematics of Common Voles), Moscow: Nauka, 1983.

  53. Malygin, V.M. and Ryabov, S.V., Distribution and biology of sibling species of common vole in zoomedical aspect, Dezinfekt. Delo, 2013, no. 4, pp. 27–35.

  54. Uller, T. and Leimu, R., Founder events predict changes in genetic diversity during human-mediated range expansions, Global Change Biol., 2011, vol. 17, pp. 3478–3485. https://doi.org/10.1111/j.1365-2486.2011.02509.x

    Article  Google Scholar 

Download references

Funding

This work was carried out within the framework of the state assignment of the laboratory of evolutionary zoology and genetics of the Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch, Russian Academy of Sciences, no. 0207-2021-0007, “Evolutionary Aspects of the Formation of Terrestrial Biota in the East of Asia.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. N. Sheremetyeva.

Ethics declarations

Conflict of interest. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for animal care and use have been followed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheremetyeva, I.N., Kartavtseva, I.V., Emelyanova, A.A. et al. The mtDNA Control Region Variability of Microtus rossiaemeridionalis (Rodentia, Arvicolini) from Two Invasive Populations of the Russian Far East. Russ J Genet 57, 1263–1270 (2021). https://doi.org/10.1134/S1022795421110132

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795421110132

Keywords:

Navigation