Skip to main content
Log in

Bioinformatic Annotation of Genes for Alzheimer’s Disease and Coronary Heart Disease

  • HUMAN GENETICS
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

In this work, we performed a functional annotation for genes for Alzheimer’s disease (AD) susceptibility and for coronary heart disease (CHD) susceptibility using Cytoscape v. 3.6.0. The identified genes are involved in the immune response and apoptosis and regulate the processes of neurogenesis and angiogenesis. On the basis of the results of the functional annotation, genes for AD predisposition and genes for CHD susceptibility were assigned to terms in accordance with the gene ontology (GO) and combined into groups. The number of common groups of functions in which genes for susceptibility to Alzheimer’s disease and coronary heart disease were involved was 107. Common genes of susceptibility APOE, APOA1, and ABCA1, involved in fatty acid metabolism, can potentially participate in the mechanisms of association of the studied diseases. The results obtained can serve as a prerequisite for further studies of the contribution of hereditary factors to the joint manifestation of AD and CHD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. World Alzheimer Report 2019: Attitudes to Dementia, Alzheimer’s Disease International, 2019.

  2. Corrêa-Velloso, J.C., Gonçalves, M.C., Naaldijk, Y., et al., Pathophysiology in the comorbidity of bipolar disorder and Alzheimer’s disease: pharmacological and stem cell approaches, Prog. Neuropsychopharmacol. Biol. Psychiatry, 2018, vol. 80, part A, pp. 34–53. https://doi.org/10.1016/j.pnpbp.2017.04.033

  3. Klimova, B., Kuca, K., and Maresova, P., Global view on Alzheimer’s disease and diabetes mellitus: threats, risks and treatment Alzheimer’s disease and diabetes mellitus, Curr. Alzheimer Res., 2018, vol. 15, no. 14, pp. 1277–1282. https://doi.org/10.2174/1567205015666180925110222

    Article  CAS  PubMed  Google Scholar 

  4. Liu, G., Yao, L., Liu, L., et al., Cardiovascular disease contributes to Alzheimer’s disease: evidence from large-scale genome-wide association studies, Neurobiol. Aging, 2014, vol. 35, no. 4, pp. 786–792. https://doi.org/10.1016/j.neurobiolaging.2013.10.084

    Article  PubMed  Google Scholar 

  5. Chen, W., Jin, F., Cao, G., et al., ApoE4 may be a promising target for treatment of coronary heart disease and Alzheimer’s disease, Curr. Drug Targets, 2018, vol. 19, no. 9, pp. 1038–1044. https://doi.org/10.2174/1389450119666180406112050

    Article  CAS  PubMed  Google Scholar 

  6. Wang, F., Ji, Y., Chen, X., et al., ABCA1 variants rs2230806 (R219K), rs4149313 (M8831I), and rs9282541 (R230C) are associated with susceptibility to coronary heart disease, J. Clin. Lab. Anal., 2019, vol. 33, no. 6. e22896. https://doi.org/10.1002/jcla.22896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fouladseresht, H., Khazaee, S., Javad Zibaeenezhad, M., et al., Association of ABCA1 haplotypes with coronary artery disease, Lab. Med., 2020, vol. 51, no. 2, pp. 157–168. https://doi.org/10.1093/labmed/lmz031

    Article  PubMed  Google Scholar 

  8. Fehér, Á., Giricz, Z., Juhász, A., et al., ABCA1 rs2230805 and rs2230806 common gene variants are associated with Alzheimer’s disease, Neurosci. Lett., 2018, vol. 664, pp. 79–83. https://doi.org/10.1016/j.neulet.2017.11.027

    Article  CAS  PubMed  Google Scholar 

  9. Pinero, J., Bravo, A., Rosinach, N.Q., et al., DisGeNET: a comprehensive platform, integrating information on human disease-associated genes and variants, Nucleic Acids Res., 2017, vol. 45, pp. D833–D839. https://doi.org/10.1093/nar/gkw943

    Article  CAS  PubMed  Google Scholar 

  10. Bindea, G., Mlecnik, B., Hackl, H., et al., ClueGO: a cytoscape plug-into decipher functionally grouped gene ontology and pathway annotation networks, Bioinformatics, 2009, vol. 25, no. 8, pp. 1091–1093. https://doi.org/10.1093/bioinformatics/btp101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rebrov, A.P. and Voskoboi, I.V., The role of inflammatory infectious factors in the development of atherosclerosis, Ter. Arkh., 2004, vol. 76, no. 1, pp. 78–82.

    CAS  PubMed  Google Scholar 

  12. Ng, A., Tam, W.W., Zhang, M.W., et al., IL-1β, IL-6, TNF-α and CRP in elderly patients with depression or Alzheimer’s disease: systematic review and meta-analysis, Sci. Rep., 2018, vol. 8, no. 1, p. 12050. https://doi.org/10.1038/s41598-018-30487-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kishimoto, T., IL-6: from its discovery to clinical applications, Int. Immunol., 2010, vol. 22, no. 5, pp. 347–352. https://doi.org/10.1093/intimm/dxq030

    Article  CAS  PubMed  Google Scholar 

  14. Buul, J.D. and Hordijk, P.L., Signaling in leukocyte transendothelial migration, Arterioscler. Thromb. Vasc. Biol., 2004, vol. 24, no. 5, pp. 824–833. https://doi.org/10.1161/01.ATV.0000122854.76267.5c

    Article  CAS  PubMed  Google Scholar 

  15. Becker, B.F., Heindl, B., Kupatt, C., and Zahler, S., Endothelial function and hemostasis, Z. Kardiol., 2000, vol. 89, no. 3, pp. 160–167. https://doi.org/10.1007/PL00007320

    Article  CAS  PubMed  Google Scholar 

  16. Toapanta, F.R. and Ross, T.M., Complement-mediated activation of the adaptive immune responses: role of C3d in linking the innate and adaptive immunity, Immunol. Res., 2006, vol. 36, nos. 1—3, pp. 197–210. https://doi.org/10.1385/IR:36:1:197

    Article  CAS  PubMed  Google Scholar 

  17. Tsoporis, J.N., Marks, A., Haddad, A., et al., S100b expression modulates left ventricular remodeling after myocardial infarction in mice, Circulation, 2005, vol. 111, pp. 598–560. https://doi.org/10.1161/01.CIR.0000154554.65287.F5

    Article  CAS  PubMed  Google Scholar 

  18. Fang, F., Lue, L.-F., Yan, S., et al., RAGE-dependent signaling in microglia contributes to neuroinflammation, Aβ accumulation, and impaired learning/memory in a mouse model of Alzheimer’s disease, FASEB J., 2010, vol. 24, no. 4, pp. 1043–1055. https://doi.org/10.1096/fj.09-139634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jin, Q., Chen, H., Luo, A., et al., S100A14 stimulates cell proliferation and induces cell apoptosis at different concentrations via receptor for advanced glycation end products (RAGE), PLoS One, 2011, vol. 6, no. 4. e19375. https://doi.org/10.1371/journal.pone.0019375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wan, F. and Lenardo, M.J., The nuclear signaling of NF-kappaB: current knowledge, new insights, and future perspectives, Cell Res., 2010, vol. 20, no. 1, pp. 24–33. https://doi.org/10.1038/cr.2009.137

    Article  CAS  PubMed  Google Scholar 

  21. Allan, S.M., Tyrrell, P.J., and Rothwell, N.J., Interleukin-1 and neuronal injury, Nat. Rev. Immunol., 2005, vol. 5, pp. 629–640. https://doi.org/10.1038/nri1664

    Article  CAS  PubMed  Google Scholar 

  22. Ikushima, H., Munakata, Y., Ishii, T., et al., Internalization of CD26 by mannose 6-phosphate/insulin-like growth factor II receptor contributes to T cell activation, Proc. Natl. Acad. Sci. U.S.A., 2000, vol. 97, pp. 8439–8444. https://doi.org/10.1073/pnas.97.15.8439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hohsfield, L.A. and Humpel, C., Migration of blood cells to β-amyloid plaques in Alzheimer’s disease, Exp. Gerontol., 2015, vol. 65, pp. 8–15. https://doi.org/10.1016/j.exger.2015.03.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jarnagin, K., Grunberger, D., Mulkins, M., et al., Identification of surface residues of the monocyte chemotactic protein 1 that affect signaling through the receptor CCR2, Biochemistry, 1999, vol. 38, no. 49, pp. 16167–16177. https://doi.org/10.1021/bi9912239

    Article  CAS  PubMed  Google Scholar 

  25. Rossignol, P., Ho-Tin-Noe, B., Vranckx, R., et al., Protease nexin-1 inhibits plasminogen activation-induced apoptosis of adherent cells, Biol. Chem., 2004, vol. 279, no. 11, pp. 10346–10356. https://doi.org/10.1074/jbc.m310964200

    Article  CAS  Google Scholar 

  26. Dixelius, J., Olsson, A.-K., Thulin, A., et al., Minimal active domain and mechanism of action of the angiogenesis inhibitor histidine-rich glycoprotein, Cancer Res., 2006, vol. 66, no. 4, pp. 2089–2097. https://doi.org/10.1158/0008-5472.CAN-05-2217

    Article  CAS  PubMed  Google Scholar 

  27. Lapicka-Bodzioch, K., Bodzioch, M., Kruell, M., et al., Homogeneous assay based on 52 primer sets to scan for mutations of the ABCA1 gene and its application in genetic analysis of a new patient with familial high-density lipoprotein deficiency syndrome, Biochim. Biophys. Acta, 2001, vol. 1537, pp. 42–48. https://doi.org/10.1016/s0925-4439(01)00053-9

    Article  CAS  PubMed  Google Scholar 

  28. Marcil, M., Brooks-Wilson, A., Clee, S.M., et al., Mutations in the ABC1 gene in familial HDL deficiency with defective cholesterol efflux, Lancet, 1999, vol. 354, pp. 1341—1346. https://doi.org/10.1016/s0140-6736(99)07026-9

    Article  CAS  PubMed  Google Scholar 

  29. Sanchez-Mejia, R.O. and Mucke, L., Phospholipase A2 and arachidonic acid in Alzheimer’s disease, Biochim. Biophys. Acta, 2010, vol. 1801, no. 8, pp. 784–790. https://doi.org/10.1016/j.bbalip.2010.05.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Alphey, M.S., Yu, W., Byres, E., et al., Structure and reactivity of human mitochondrial 2,4-dienoyl-CoA reductase: enzyme—ligand interactions in a distinctive short-chain reductase active site, J. Biol. Chem., 2005, vol. 280, pp. 3068–3077. https://doi.org/10.1074/jbc.M411069200

    Article  CAS  PubMed  Google Scholar 

  31. Kuo, A., Stoica, G., Riegel, A., and Wellstein, A., Recruitment of insulin receptor substrate-1 and activation of NF-κB essential for midkine growth signaling through anaplastic lymphoma kinase, Oncogene, 2007, vol. 26, pp. 859–869. https://doi.org/10.1038/sj.onc.1209840

    Article  CAS  PubMed  Google Scholar 

  32. Orlando, B.J. and Malkowski, M.G., Substrate-selective inhibition of cyclooxygeanse-2 by fenamic acid derivatives is dependent on peroxide tone, Biol. Chem., 2016, vol. 291, no. 29, pp. 15069–15081. https://doi.org/10.1074/jbc.M116.725713

    Article  CAS  Google Scholar 

  33. Musee, J. and Marnett, L.J., Prostaglandin H synthase-2-catalyzed oxygenation of 2-arachidonoylglycerol is more sensitive to peroxide tone than oxygenation of arachidonic acid, Biol. Chem., 2012, vol. 287, no. 44, pp. 37383–37394. https://doi.org/10.1074/jbc.M112.381202

    Article  CAS  Google Scholar 

  34. Suzuki, T., Watanabe, K., Kanaoka, Y., et al., Induction of hematopoietic prostaglandin D synthase in human megakaryocytic cells by phorbol ester, Biochem. Biophys. Res. Commun., 1997, vol. 241, pp. 288–293. https://doi.org/10.1006/bbrc.1997.7803

    Article  CAS  PubMed  Google Scholar 

  35. Gogvadze, V., Orrenius, S., and Zhivotovsky, B., Multiple pathways of cytochrome c release from mitochondria in apoptosis, Biochim. Biophys. Acta, Bioenerg., 2006, vol. 1757, nos. 5—6, pp. 639–647. https://doi.org/10.1016/j.bbabio.2006.03.016

    Article  CAS  Google Scholar 

  36. Li, M.O., Wan, Y.Y., Sanjabi, S., et al., Transforming growth factor-β regulation of immune responses, Annu. Rev. Immunol., 2006, vol. 24, no. 1, pp. 99–146. https://doi.org/10.1146/annurev.immunol.24.021605.090737

    Article  CAS  PubMed  Google Scholar 

  37. Miyata, Y., Akashi, M., and Nishida, E., Molecular cloning and characterization of a novel member of the MAP kinase superfamily, Genes Cells, 1999, vol. 4, pp. 299–309. https://doi.org/10.1046/j.1365-2443.1999.00261.x

    Article  CAS  PubMed  Google Scholar 

  38. Deane, R., Sagare, A., and Zlokovic, B.V., The role of the cell surface LRP and soluble LRP in blood—brain barrier Abeta clearance in Alzheimer’s disease, Curr. Pharm. Des., 2008, vol. 14, no. 16, pp. 1601–1605. https://doi.org/10.2174/138161208784705487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kino, T., Manoli, I., Kelkar, S., et al., Glucocorticoid receptor (GR) β has intrinsic, GRα-independent transcriptional activity, Biochem. Biophys. Res. Commun., 2009, vol. 381, no. 4, pp. 671–675. https://doi.org/10.1016/j.bbrc.2009.02.110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Solanas-Barca, M., Castro-Oros, I., Mateo-Gallego, R., et al., Apolipoprotein E gene mutations in subjects with mixed hyperlipidemia and a clinical diagnosis of familial combined hyperlipidemia, Atherosclerosis, 2012, vol. 222, pp. 449–455. https://doi.org/10.1016/j.atherosclerosis.2012.03.011

    Article  CAS  PubMed  Google Scholar 

  41. Corder, E.H., Saunders, A.M., Strittmatter, W.J., et al., Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families, Science, 1993, vol. 261, pp. 921–923. https://doi.org/10.1126/science.8346443

    Article  CAS  PubMed  Google Scholar 

  42. Chen, Z.-Y., Ieraci, A., Teng, H., et al., Sortilin controls intracellular sorting of brain-derived neurotrophic factor to the regulated secretory pathway, J. Neurosci., 2005, vol. 25, no. 26, pp. 6156–6166. https://doi.org/10.1523/JNEUROSCI.1017-05.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Carey, A.L. and Febbraio, M.A., Interleukin-6 and insulin sensitivity: friend or foe?, Diabetologia, 2004, vol. 47, pp. 1135–1142. https://doi.org/10.1007/s00125-004-1447-y

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

No financial support was provided for the preparation of the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. E. Chizhik.

Ethics declarations

Conflict of interest. The authors declare that they have no conflict of interest.

Statement of compliance with standards of research involving humans as subjects. All procedures performed in a study involving people comply with the ethical standards of the institutional and/or national committee for research ethics and the 1964 Helsinki Declaration and its subsequent changes or comparable ethical standards. Informed voluntary consent was obtained from each of the participants.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chasovskikh, N.Y., Chizhik, E.E. & Bobrysheva, A.A. Bioinformatic Annotation of Genes for Alzheimer’s Disease and Coronary Heart Disease. Russ J Genet 57, 1285–1293 (2021). https://doi.org/10.1134/S102279542111003X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102279542111003X

Keywords:

Navigation