Skip to main content
Log in

The Fox Domestication Experiment and Dog Evolution: A View Based on Modern Molecular, Genetic, and Archaeological Data

  • REVIEWS AND THEORETICAL ARTICLES
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Animal and plant domestication is one of the most remarkable cultural achievements in human evolution. The first animal to have been domesticated was the dog. Although related studies are many, little is known about the earliest times of its domestication. This review emphasizes that there are parallels in behavior change and its molecular genetic basis between domesticated foxes and dogs, with a special focus on the so-called “ancient” breeds. Three approaches to the study of the molecular genetic mechanisms of domestication are described and some of their results obtained with modern methods, including high-throughput sequencing, are given. One involves the experimental modeling of early domestication stages in the fox, a farmed animal; another, a comparative analysis of modern dogs and wolves; and yet another, a paleogenetic analysis of ancient dogs and wolves, with an account of their archaeological context. Phylogenetic and phylogeographical approaches to the study of dog domestication and their role in a comprehensive reconstruction of domestication mechanisms are discussed. Difficulties with timing estimates, the geographic position and the reconstruction of molecular mechanisms for dog domestication are considered in the context of sampling strategies for genomic analysis. Genes encoding the signaling system of glutamate receptors and neural crest cells, with their broad pleiotropic effect, are discussed as being the most important targets of selection in experimental and historical domestication. In conclusion, the need of supplementing the studies of domestication mechanisms with analyses of various developmental stages at the molecular and organismal levels is highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Darwin, C., On the Origin of Species by Means of Natural Selection, London: J. Murray, 1859.

    Google Scholar 

  2. Darwin, C., Variation of Plants and Animals under Domestication, London: J. Murray, 1868.

    Google Scholar 

  3. Belyaev, D.K., Destabilizing selection as a factor in domestication, J. Hered., 1979, vol. 70, no. 5, pp. 301—308.

    Article  CAS  PubMed  Google Scholar 

  4. Galibert, F., Quignon, P., Hitte, C., et al., Toward understanding dog evolutionary and domestication history, C. R. Biol., 2011, vol. 334, no. 3, pp. 190—196.

    Article  PubMed  Google Scholar 

  5. Kislovskii, D.A., The problem of mastering the evolution of domestic animals, in Izbrannye sochineniya (Selected Papers), Moscow: Kolos, 1965, pp. 121—160.

  6. Olsen, S.J., Origins of the Domestic Dog: The Fossil Record, Tucson, Arizona: Univ. Arizona Press, 1985.

    Google Scholar 

  7. Clutton-Brock, J., Origins of the dog: the archaeological evidence, in The Domestic Dog: Its Evolution, Behavior and Interactions with People, Cambridge: Cambridge Univ. Press, 2017, 2nd ed., pp. 7—22.

    Google Scholar 

  8. Morey, D.F., The early evolution of the domestic dog, Am. Sci., 1994, vol. 82, pp. 336—347.

    Google Scholar 

  9. Germonpré, M., Sablin, M.V., Lázničková-Galetová, M., et al., Palaeolithic dogs and Pleistocene wolves revisited: a reply to Morey (2014), J. Archaeol. Sci., 2015, vol. 54, pp. 210—216.

    Article  Google Scholar 

  10. Starkov, I.D., Razvedenie serebristo-chernykh lisits (Breeding of Silver Foxes), Moscow: Vsesoyuznoye Kooperativnoye Ob’edinennoye Izdatel’stvo, 1940.

  11. Forester, J.E. and Forester, A.D., Silver Fox Odyssey: History of the Canadian Silver Fox Industry, Charlottedown, PEI: Irwin Printing, 1973.

  12. Milovanov, L.V., The first years of Soviet fur farming, Krolikovod. Zverovod., 2003, no. 6, pp. 18—20.

  13. Trut, L.N., Genetics and phenogenetics of domestication behavior, in Voprosy obshchei genetiki (Issues in General Genetics), Altukhov, Yu.P., Ed., Moscow: Nauka, 1981, pp. 323—332.

    Google Scholar 

  14. Krushinskii, L.V., Formirovanie povedeniya zhivotnykh v norme i patologii (Formation of Animal Behavior in Health and Disease), Moscow: Mosk. Gos. Univ., 1960.

  15. Hansen Wheat, C., Fitzpatrick, J.L., Rogell, B., et al., Behavioural correlations of the domestication syndrome are decoupled in modern dog breeds, Nat. Commun., 2019, vol. 10, no. 1, p. 2422.

    Article  Google Scholar 

  16. Zhukov, D.A., Stoi, kto vedet? Biologiya povedeniya cheloveka i drugikh zverei (Wait, Who Is Leading? Biology of Human and Other Animal Behavior), Moscow: Al’pina Non-Fikshn, 2014, vol. 2.

  17. Ortolani, A., Vernooij, H., and Coppinger, R., Ethiopian village dogs: behavioural responses to a stranger’s approach, Appl. Anim. Behav. Sci., 2009, vol. 119, no. 3, pp. 210—218. https://doi.org/10.1016/j.applanim.2009.03.011

    Article  Google Scholar 

  18. Trut, L.N., Early canid domestication: the farm-fox experiment: foxes bred for tamability in a 40-year experiment exhibit remarkable transformations that suggest an interplay between behavioral genetics and development, Am. Sci., 1999, vol. 87, no. 2, pp. 160—169.

    Article  Google Scholar 

  19. Trut, L., Oskina, I., and Kharlamova, A., Animal evolution during domestication: the domesticated fox as a model, BioEssays, 2009, vol. 31, no. 3, pp. 349—360.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Trut, L.N., Plyusnina, I.Z., and Oskina, I.N., An experiment on fox domestication and debatable issues of evolution of the dog, Russ. J. Genet., 2004, vol. 40, no. 6, pp. 644—655. https://doi.org/10.1023/B:RUGE.0000033312.92773.c1

    Article  CAS  Google Scholar 

  21. Lord, K.A., Larson, G., Coppinger, R.P., et al., The history of farm foxes undermines the animal domestication syndrome, Trends Ecol. Evol., 2020, vol. 35, no. 2, pp. 125—136. https://doi.org/10.1016/j.tree.2019.10.011

    Article  PubMed  Google Scholar 

  22. Milovanov, L.V., Istoriya zverovodstva: “Saltykovskii” (The History of Fur Farming: Saltykovsky), Moscow: Kolos-Press, 2001.

  23. Trut, L., Kharlamova, A., and Herbeck, Yu., Belyaev’s and PEI’s foxes: a far cry, Trends Ecol. Evol., 2020, vol. 35, no. 8, pp. 649—651. https://doi.org/10.1016/j.tree.2020.03.010

    Article  PubMed  Google Scholar 

  24. Waddington, C.H., Genetic assimilation of an acquired character, Evolution, 1953, pp. 118—126.

  25. Serpell, J., Duffy, D.L., and Jagoe, J.A., Becoming a dog: early experience and the development of behavior, in The Domestic Dog: Its Evolution, Behavior and Interactions with People, Cambridge: Cambridge Univ. Press, 2017, 2nd ed., chapter 6, pp. 99—117.

    Google Scholar 

  26. Bradshaw, J. and Rooney, N., Dog social behavior and communication, in The Domestic Dog: Its Evolution, Behavior and Interactions with People, Cambridge: Cambridge Univ. Press, 2017, 2nd ed., Chapter 8, pp. 133—159.

    Google Scholar 

  27. Darwin, C., The Expression of the Emotions in Man and Animals, New York: Greenwood Press, 1873.

    Google Scholar 

  28. Trut, L.N., The role of behavior in domestication transformations of animals (on the example of silver foxes), Doctoral (Biol.) Dissertation, Novosibirsk: Inst. Tsitol. Genet. Sib. Otd. Akad. Nauk SSSR, 1980.

  29. Gogoleva, S.S., Volodin, J.A., Volodina, E.V., et al., To bark or not to bark: vocalizations by red foxes selected for tameness or aggressiveness toward humans, Bioacoustics, 2008, vol. 18, no. 2, pp. 99—132.

    Article  Google Scholar 

  30. Boyko, A.R., Boyko, R.H., Boyko, C.M., et al., Complex population structure in African village dogs and its implications for inferring dog domestication history, Proc. Natl. Acad. Sci. U.S.A., 2009, vol. 106, no. 33, pp. 13903—13908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Liu, Y.-H., Wang, L., Xu, T., et al., Whole-genome sequencing of African dogs provides insights into adaptations against tropical parasites, Mol. Biol. Evol., 2018, vol. 35, no. 2, pp. 287—298. https://doi.org/10.1093/molbev/msx258

    Article  CAS  PubMed  Google Scholar 

  32. Boitani, L., Ciucci, P., and Ortolani, A., Behaviour and social ecology of free-ranging dogs, in The Behavioural Biology of Dogs, Jensen, P., Ed., Wallingford: CABI, 2007, pp. 147—165.

    Google Scholar 

  33. Poyarkov, A.D., Historical (biographical) method of describing the social organization and behavior of stray dogs (Canis familiaris L.), in Metody issledovaniya v ekologii i etologii (Methods of Research in Ecology and Ethology) (Proc. School Young Biol.), Pushchino, 1986, pp. 179—199.

  34. Poyarkov, A.D., Vereshchagin, A.O., and Bogomolov, P.L., Study of the stray dogs (Canis familiaris) population in Moscow: 2, Zool. Zh., 2011, vol. 90, no. 6, pp. 724—732.

    Google Scholar 

  35. Scott, J.P. and Fuller, J.L., Genetics and the Social Behavior of the Dog, Chicago: Univ. Chicago Press, 2012.

    Google Scholar 

  36. von Holdt, B.M. and Driscoll, C.A., Origins of the dog: genetic insights into dog domestication, Domestic Dog: Its Evolution, Behavior and Interactions with People, Serpell, J., Cambridge: Cambridge Univ. Press, 2017, 2nd ed., pp. 22—41. https://doi.org/10.1017/9781139161800.003

  37. Keeler, C.E., Coat colour gene synthesis of tame behaviour in the rat, mink and fox, Mind Over Matter, 1964, vol. 9, pp. 16—30.

    Google Scholar 

  38. Croft, R.B., The culture of black and silver foxes, in Rod and Gun in Canada, 1912, p. 8. (cited by: 39).

  39. Generozov, V.Ya., Promyshlennoe razvedenie serebristo-chernykh lisits i pestsov v Severnoi Amerike: otchet po osmotru lisovodnykh pitomnikov v Kanade (Commercial Breeding of Silver Foxes and Arctic Foxes in North America: Survey Report on Fox Farms in Canada), Petrograd: Tipografiya M. Merkusheva, 1916.

  40. Wang, G.-D., Zhai, W., Yang, H.-C., et al., Out of southern East Asia: the natural history of domestic dogs across the world, Cell Res., 2016, vol. 26, no. 1, pp. 21—33. https://doi.org/10.1038/cr.2015.147

    Article  PubMed  Google Scholar 

  41. Bergström, A., Frantz, L., Schmidt, R., et al., Origins and genetic legacy of prehistoric dogs, Science, 2020, vol. 370, no. 6516, pp. 557—564. https://doi.org/10.1126/science.aba9572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Fan, Z., Silva, P., Gronau, I., et al., Worldwide patterns of genomic variation and admixture in gray wolves, Genome Res., 2016, vol. 26, no. 2, pp. 163—173. https://doi.org/10.1101/gr.197517.115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Statham, M.J., Trut, L.N., Sacks, B.N., et al., On the origin of a domesticated species: identifying the parent population of Russian silver foxes (Vulpes vulpes), Biol. J. Linn. Soc., 2011, vol. 103, no. 1, pp. 168—175.

    Article  Google Scholar 

  44. Belyaev, D.K. and Trut, L.N., Genetic relationships of specific changes in standard coat color of silver foxes (“brown mottling” and “star patch”) that arose in the process of domestication, Genetica (Moscow), 1986, vol. 22, no. 1, pp. 119—128.

    Google Scholar 

  45. Herre, W. and Röhrs, M., Haustiere—zoologisch gesehen (compendium of basic data), 1973.

  46. Wayne, R.K., Cranial morphology of domestic and wild canids: the influence of development on morphological change, Evolution, 1986, vol. 40, no. 2, pp. 243—261. https://doi.org/10.1111/j.1558-5646.1986.tb00467.x

    Article  PubMed  Google Scholar 

  47. Clutton-Brock, J., Animals as Domesticates: A World View through History, Michigan: MSU Press, 2012.

    Google Scholar 

  48. Benecke, N., Studies on early dog remains from Northern Europe, J. Archaeol. Sci., 1987, vol. 14, no. 1, pp. 31—49. https://doi.org/10.1016/S0305-4403(87)80004-3

    Article  Google Scholar 

  49. Boudadi-Maligne, M., Mallye, J.-B., Langlais, M., et al., Magdalenian dog remains from Le Morin rock-shelter (Gironde, France): socio-economic implications of a zootechnical innovation, PALEO. Rev. Archéol. Préhist., 2012, no. 23, pp. 39—54. https://doi.org/10.4000/paleo.2465

  50. Clutton-Brock, J., Near Eastern canids and the affinities of the Natufian dogs, Z. Tierzüchtung Züchtungsbiol., 1962, vol. 76, pp. 326—333.

    Google Scholar 

  51. Lawrence B., Reed C.A. The dogs of Jarmo, in Prehistoric Archeology along the Zagros Flanks, Chicago: Univ. Chicago, 1983, pp. 485—489.

    Google Scholar 

  52. Morey, D., Dogs: Domestication and the Development of a Social Bond, Cambridge: Cambridge Univ. Press, 2010.

    Book  Google Scholar 

  53. Tchernov, E. and Valla, F.F., Two new dogs, and other Natufian dogs, from the southern Levant, J. Archaeol. Sci., 1997, vol. 24, no. 1, pp. 65—95.

    Article  Google Scholar 

  54. Benecke, N., Archäozoologische Studien zur Entwicklung der Haustierhaltung in Mitteleuropa und Südskandinavien von den Anfängen bis zum Ausgehen den Mittelalter, vol. 46 of Schriften zur Ur- und Frühgeschichte, Berlin: De Gruyter, 1994.

  55. Ameen, C., Hulme-Beaman, A., Avin, A., et al., A landmark-based approach for assessing the reliability of mandibular tooth crowding as a marker of dog domestication, J. Archaeol. Sci. 2017, vol. 85, pp. 41—50.

    Article  Google Scholar 

  56. Waller, B.M., Peirce, K., Caeiro, C.C., et al., Paedomorphic facial expressions give dogs a selective advantage, PLoS One, 2013, vol. 8, no. 12. e82686. https://doi.org/10.1371/journal.pone.0082686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Janssens, L., Perri, A., Crombé, P., et al., An evaluation of classical morphologic and morphometric parameters reported to distinguish wolves and dogs, J. Archaeol. Sci. Rep., 2019, vol. 23, pp. 501—533. https://doi.org/10.1016/j.jasrep.2018.10.012

    Article  Google Scholar 

  58. Trut, L.N., Dzerzhinskii, F.Ya., and Nikol’skii V.S., Component analysis of craniological characters of silver foxes (Vulpes fulvus Desm.) and their changes arising under domestication, Genetika (Moscow), 1991, vol. 27, no. 8, pp. 1440—1449.

    CAS  PubMed  Google Scholar 

  59. Wood, E.K., Maddux, S.D., Southard, T.E., et al., The effect of behavioral selection on the dentition of Russian silver foxes and its implications for human dental evolution, FASEB J., 2019, vol. 33, no. S1, pp. 452—519.

    Google Scholar 

  60. Sánchez-Villagra, M.R., Geiger, M., and Schneider, R.A., The taming of the neural crest: a developmental perspective on the origins of morphological covariation in domesticated mammals, R. Soc. Open Sci., 2016, vol. 3, no. 6. https://doi.org/10.1098/rsos.160107

  61. Wilkins, A.S., Wrangham, R.W., and Fitch, W.T., The “domestication syndrome” in mammals: a unified explanation based on neural crest cell behavior and genetics, Genetics, 2014, vol. 197, no. 3, pp. 795—808. https://doi.org/10.1534/genetics.114.165423

    Article  PubMed  PubMed Central  Google Scholar 

  62. Hansen Wheat, C., Bijl, W. and van der Wheat, C.W., Morphology does not covary with predicted behavioral correlations of the domestication syndrome in dogs, Evol. Lett., 2020, vol. 4, no. 3, pp. 189—199. https://doi.org/10.1002/evl3.168

    Article  PubMed  PubMed Central  Google Scholar 

  63. Lindblad-Toh, K., Wade, C.M., Mikkelsen, T.S., et al., Genome sequence, comparative analysis and haplotype structure of the domestic dog, Nature, 2005, vol. 438, no. 7069, pp. 803—819. https://doi.org/10.1038/nature04338

    Article  CAS  PubMed  Google Scholar 

  64. Larson, G., Karlsson, E.K., Perri, A., et al., Rethinking dog domestication by integrating genetics, archeology, and biogeography, Proc. Natl. Acad. Sci. U.S.A., 2012, vol. 109, no. 23, pp. 8878—8883. https://doi.org/10.1073/pnas.1203005109

    Article  PubMed  PubMed Central  Google Scholar 

  65. Ostrander, E.A., Wang, G.-D., Larson, G., et al., Dog10K: an international sequencing effort to advance studies of canine domestication, phenotypes and health, Nat. Sci. Res., 2019, vol. 6, no. 4, pp. 810—824. https://doi.org/10.1093/nsr/nwz049

    Article  CAS  Google Scholar 

  66. Pilot, M., Moura, A.E., Okhlopkov, I.M., et al., Global phylogeographic and admixture patterns in grey wolves and genetic legacy of an ancient Siberian lineage, Sci. Rep., 2019, vol. 9, no. 1, pp. 1—13. https://doi.org/10.1038/s41598-019-53492-9

    Article  CAS  Google Scholar 

  67. Botigué, L.R., Song, S., Scheu, A., et al., Ancient European dog genomes reveal continuity since the Early Neolithic, Nat. Commun., 2017, vol. 8, p. 16082. https://doi.org/10.1038/ncomms16082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Pendleton, A.L., Shen, F., Taravella, A.M., et al., Comparison of village dog and wolf genomes highlights the role of the neural crest in dog domestication, BMC Biol., 2018, vol. 16, no. 1, p. 64. https://doi.org/10.1186/s12915-018-0535-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Adeola, A.C., Ommeh, S.C., Song, J.-J., et al., A cryptic mitochondrial DNA link between North European and West African dogs, J. Genet. Genom., 2017, vol. 44, no. 3, pp. 163—170. https://doi.org/10.1016/j.jgg.2016.10.008

    Article  Google Scholar 

  70. Freedman, A.H., Gronau, I., Schweizer, R.M., et al., Genome sequencing highlights the dynamic early history of dogs, PLoS Genet., 2014, vol. 10, no. 1. e1004016. https://doi.org/10.1371/journal.pgen.1004016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Bibikov, D.I., Kudaktin, A.N., and Ryabov, A.S., Synanthropic wolves: distribution, ecology, Zool. Zh., 1985, vol. 64, no. 3, pp. 429—440.

    Google Scholar 

  72. Thalmann, O. and Perri, A.R., Paleogenomic inferences of dog domestication, Paleogenomics: Genome-Scale Analysis of Ancient DNA Population Genomics, Lindqvist, C. and Rajora, O.P., Eds., Cham: Springer-Verlag, 2019, pp. 273—306.

  73. Frantz, L.A.F., Bradley, D.G., Larson, G., et al., Animal domestication in the era of ancient genomics, Nat. Rev. Genet., 2020, vol. 21, no. 8, pp. 449—460. https://doi.org/10.1038/s41576-020-0225-0

    Article  CAS  PubMed  Google Scholar 

  74. Morey, D.F. and Jeger, R., Paleolithic dogs: why sustained domestication then?, J. Archaeol. Sci. Rep., 2015, vol. 3, suppl. C, pp. 420—428.

  75. Perri, A., A wolf in dog’s clothing: initial dog domestication and Pleistocene wolf variation, J. Archaeol. Sci., 2016, vol. 68, pp. 1—4.

    Article  Google Scholar 

  76. Drake, A.G., Coquerelle, M., and Colombeau, G., 3D morphometric analysis of fossil canid skulls contradicts the suggested domestication of dogs during the late Paleolithic, Sci. Rep., 2015, vol. 5, no. 1, pp. 1—8. https://doi.org/10.1038/srep08299

    Article  CAS  Google Scholar 

  77. Germonpré, M., Sablin, M.V., Stevens, R.E., et al., Fossil dogs and wolves from Palaeolithic sites in Belgium, the Ukraine and Russia: osteometry, ancient DNA and stable isotopes, J. Archaeol. Sci., 2009, vol. 36, no. 2, pp. 473—490. https://doi.org/10.1016/j.jas.2008.09.033

    Article  Google Scholar 

  78. Germonpré, M., Lázničková-Galetová, M., and Sablin, M.V., Palaeolithic dog skulls at the Gravettian Předmostí site, the Czech Republic, J. Archaeol. Sci., 2012, vol. 39, no. 1, pp. 184—202. https://doi.org/10.1016/j.jas.2011.09.022

    Article  Google Scholar 

  79. Crockford, S.J. and Kuzmin, Y.V., Comments on Germonpré et al., Journal of Archaeological Science 36, 2009 “Fossil dogs and wolves from Palaeolithic sites in Belgium, the Ukraine and Russia: osteometry, ancient DNA and stable isotopes”, and Germonpré, Lázkičková-Galetová, and Sablin, Journal of Archaeological Science 39, 2012 “Palaeolithic dog skulls at the Gravettian Předmostí site, the Czech Republic”, J. Archaeol. Sci., 2012, vol. 39, no. 8, pp. 2797—2801. https://doi.org/10.1016/j.jas.2012.04.033

    Article  Google Scholar 

  80. Ovodov, N.D., Crockford, S.J., Kuzmin, Y.V., et al., A 33 000-year-old incipient dog from the Altai Mountains of Siberia: evidence of the earliest domestication disrupted by the Last Glacial Maximum, PLoS One, 2011, vol. 6, no. 7. e22821. https://doi.org/10.1371/journal.pone.0022821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Zeder, M.A., Pathways to animal domestication, in Biodiversity in Agriculture: Domestication, Evolution, and Sustainability, Cambridge: Cambridge Univ. Press, 2012, pp. 227—259.

    Google Scholar 

  82. Frantz, L.A.F., Mullin, V.E., Pionnier-Capitan, M., et al., Genomic and archaeological evidence suggest a dual origin of domestic dogs, Science, 2016, vol. 352, no. 6290, pp. 1228—1231.https://doi.org/10.1126/science.aaf3161

    Article  CAS  PubMed  Google Scholar 

  83. Liu, L. and Chen, X., The Archaeology of China: From the Late Paleolithic to the Early Bronze Age, Cambridge: Cambridge Univ. Press, 2012. (cited by: Zhang et al., 2020).

    Book  Google Scholar 

  84. Zhang, M., Sun, G., Ren, L., et al., Ancient DNA evidence from China reveals the expansion of pacific dogs, Mol. Biol. Evol., 2020, vol. 37, no. 5, pp. 1462—1469. https://doi.org/10.1093/molbev/msz311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ollivier, M., Tresset, A., Frantz, L.A.F., et al., Dogs accompanied humans during the Neolithic expansion into Europe, Biol. Lett., 2018, vol. 14, no. 10, pp. 1—4. https://doi.org/10.1098/rsbl.2018.0286

    Article  Google Scholar 

  86. Skoglund, P., Ersmark, E., Palkopoulou, E., et al., Ancient wolf genome reveals an early divergence of domestic dog ancestors and admixture into high-latitude breeds, Cur. Biol., 2015, vol. 25, no. 11, pp. 1515—1519. https://doi.org/10.1016/j.cub.2015.04.019

    Article  CAS  Google Scholar 

  87. Sinding, M.-H.S., Gopalakrishnan, S., Ramos-Madrigal, J., et al., Arctic-adapted dogs emerged at the Pleistocene—Holocene transition, Science, 2020, vol. 368, no. 6498, pp. 1495—1499. https://doi.org/10.1126/science.aaz8599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Freedman, A.H. and Wayne, R.K., Deciphering the origin of dogs: from fossils to genomes, Annu. Rev. Anim. Biosci., 2017, vol. 5, no. 1, pp. 281—307. https://doi.org/10.1146/annurev-animal-022114-110937

    Article  PubMed  Google Scholar 

  89. Pang, J.-F., Kluetsch, C., Zou, X.-J., et al., mtDNA data indicate a single origin for dogs south of Yangtze River, less than 16 300 years ago, from numerous wolves, Mol. Biol. Evol., 2009, vol. 26, no. 12, pp. 2849—2864. https://doi.org/10.1093/molbev/msp195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Loog, L., Thalmann, O., Sinding, M.-H.S., et al., Ancient DNA suggests modern wolves trace their origin to a Late Pleistocene expansion from Beringia, Mol. Ecol., 2019. https://doi.org/10.1111/mec.15329

  91. Savolainen, P., Zhang, Y., Luo, J., et al., Genetic evidence for an East Asian origin of domestic dogs, Science, 2002, vol. 298, no. 5598, pp. 1610—1613. https://doi.org/10.1126/science.1073906

    Article  CAS  PubMed  Google Scholar 

  92. Ding, Z.-L., Oskarsson, M., Ardalan, A., et al., Origins of domestic dog in southern East Asia is supported by analysis of Y-chromosome DNA, Heredity, 2012, vol. 108, no. 5, pp. 507—514. https://doi.org/10.1038/hdy.2011.114

    Article  CAS  PubMed  Google Scholar 

  93. Thalmann, O., Shapiro, B., Cui, P., et al., Complete mitochondrial genomes of ancient canids suggest a European origin of domestic dogs, Science, 2013, vol. 342, no. 6160, pp. 871—874. https://doi.org/10.1126/science.1243650

    Article  CAS  PubMed  Google Scholar 

  94. vonHoldt, B.M., Pollinger, J.P., Lohmueller, K.E., et al., Genome-wide SNP and haplotype analyses reveal a rich history underlying dog domestication, Nature, 2010, vol. 464, no. 7290, pp. 898—902. https://doi.org/10.1038/nature08837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Shannon, L.M., Boyko, R.H., Castelhano, M., et al., Genetic structure in village dogs reveals a Central Asian domestication origin, Proc. Natl. Acad. Sci. U.S.A., 2015, vol. 112, no. 44, pp. 13639—13644. https://doi.org/10.1073/pnas.1516215112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Pilot, M., Malewski, T., Moura, A.E., et al., On the origin of mongrels: evolutionary history of free-breeding dogs in Eurasia, Proc. R. Soc. B, 2015, vol. 282, no. 1820, p. 20152189. https://doi.org/10.1098/rspb.2015.2189

  97. Akey, J.M., Ruhe, A.L., Akey, D.T., et al., Tracking footprints of artificial selection in the dog genome, Proc. Natl. Acad. Sci. U.S.A., 2010, vol. 107, no. 3, pp. 1160—1165. https://doi.org/10.1073/pnas.0909918107

    Article  PubMed  PubMed Central  Google Scholar 

  98. Axelsson, E., Ratnakumar, A., Arendt, M.-L., et al., The genomic signature of dog domestication reveals adaptation to a starch-rich diet, Nature, 2013, vol. 495, no. 7441, pp. 360—364. https://doi.org/10.1038/nature11837

    Article  CAS  PubMed  Google Scholar 

  99. Li, Y., vonHoldt, B.M., Reynolds, A., et al., Artificial selection on brain-expressed genes during the domestication of dog, Mol. Biol. Evol., 2013, vol. 30, no. 8, pp. 1867—1876. https://doi.org/10.1093/molbev/mst088

    Article  CAS  PubMed  Google Scholar 

  100. Wang, G.-D., Zhai, W., Yang, H.-C., et al., The genomics of selection in dogs and the parallel evolution between dogs and humans, Nat. Commun., 2013, vol. 4, p. 1860. https://doi.org/10.1038/ncomms2814

    Article  CAS  PubMed  Google Scholar 

  101. Cagan, A. and Blass, T., Identification of genomic variants putatively targeted by selection during dog domestication, BMC Evol. Biol., 2016, vol. 16, no. 1, p. 10. https://doi.org/10.1186/s12862-015-0579-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Freedman, A.H., Lohmueller, K.E., and Wayne, R.K., Evolutionary history, selective sweeps, and deleterious variation in the dog, Annu. Rev. Ecol. Evol. Syst., 2016, vol. 47, no. 1, pp. 73—96. https://doi.org/10.1146/annurev-ecolsys-121415-032155

    Article  Google Scholar 

  103. Zhang, S., Wang, G.-D., Ma, P., et al., Genomic regions under selection in the feralization of the dingoes, Nat. Commun., 2020, vol. 11, no. 1, pp. 1—10. https://doi.org/10.1038/s41467-020-14515-6

    Article  CAS  Google Scholar 

  104. Cree, B.A.C., Niu, J., Hoi, K.K., et al., Clemastine rescues myelination defects and promotes functional recovery in hypoxic brain injury, Brain, 2018, vol. 141, no. 1, pp. 85—98. https://doi.org/10.1093/brain/awx312

    Article  PubMed  Google Scholar 

  105. Jantzie, L.L., Corbett, C.J., Berglass, J., et al., Complex pattern of interaction between in utero hypoxia—ischemia and intra-amniotic inflammation disrupts brain development and motor function, J. Neuroinflammation., 2014, vol. 11, no. 1, p. 131. https://doi.org/10.1186/1742-2094-11-131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Drobyshevsky, A., Jiang, R., Lin, L., et al., Unmyelinated axon loss with postnatal hypertonia after fetal hypoxia, Ann. Neurol., 2014, vol. 75, no. 4, pp. 533—541. https://doi.org/10.1002/ana.24115

    Article  PubMed  PubMed Central  Google Scholar 

  107. Huang, P., Chen, X., Hu, X., et al., Experimentally induced sepsis causes extensive hypomyelination in the prefrontal cortex and hippocampus in neonatal rats, Neuromol. Med., 2020, vol. 22, no. 3, pp. 420—436. https://doi.org/10.1007/s12017-020-08602-6

    Article  CAS  Google Scholar 

  108. Theofanopoulou, C., Gastaldon, S., O’Rourke, T., et al., Self-domestication in Homo sapiens: insights from comparative genomics, PLoS One, 2017, vol. 12, no. 10. e0185306. https://doi.org/10.1371/journal.pone.0185306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Li, Y., Wang, G.-D., Wang, M.-S., et al., Domestication of the dog from the wolf was promoted by enhanced excitatory synaptic plasticity: a hypothesis, Genome Biol. Evol., 2014, vol. 6, no. 11, pp. 3115—3121. https://doi.org/10.1093/gbe/evu245

    Article  PubMed  PubMed Central  Google Scholar 

  110. O’Rourke, T. and Boeckx, C., Glutamate receptors in domestication and modern human evolution, Neurosci., Biobehav. Rev., 2020, vol. 108, pp. 341—357. https://doi.org/10.1016/j.neubiorev.2019.10.004

    Article  CAS  Google Scholar 

  111. Kukekova, A.V., Johnson, J.L., Xiang, X., et al., Red fox genome assembly identifies genomic regions associated with tame and aggressive behaviours, Nat. Ecol. Evol., 2018, vol. 2, pp. 1479—1491. https://doi.org/10.1038/s41559-018-0611-6

    Article  PubMed  PubMed Central  Google Scholar 

  112. Wang, X., Pipes, L., Trut, L.N., et al., Genomic responses to selection for tame/aggressive behaviors in the silver fox (Vulpes vulpes), Proc. Natl. Acad. Sci. U.S.A., 2018, vol. 115, no. 41, pp. 10398—10403. https://doi.org/10.1073/pnas.1800889115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Rodríguez-Moreno, A., and Sihra, T.S., Metabotropic actions of kainate receptors in the CNS, J. Neurochem., 2007, vol. 103, no. 6, pp. 2121—2135. https://doi.org/10.1111/j.1471-4159.2007.04924.x

    Article  CAS  PubMed  Google Scholar 

  114. Turski, G.N. and Ikonomidou, C., Glutamate as a neurotoxin, Handbook of Neurotoxicity, Kostrzewa, R.M., Ed., New York: Springer-Verlag, 2014, pp. 365—397. https://doi.org/10.1007/978-1-4614-5836-4_84.

  115. Hunter, R.G., Bellani, R., Bloss, E., et al., Regulation of kainate receptor subunit mRNA by stress and corticosteroids in the rat hippocampus, PLoS One, 2009, vol. 4, no. 1. e4328. https://doi.org/10.1371/journal.pone.0004328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Joëls, M., Bosma, A., Hendriksen, H., et al., Corticosteroid actions on the expression of kainate receptor subunit mRNAs in rat hippocampus, Mol. Brain Res., 1996, vol. 37, no. 1, pp. 15—20. https://doi.org/10.1016/0169-328X(95)00267-V

    Article  PubMed  Google Scholar 

  117. Herbeck, Y.E., Gulevich, R.G., Shepeleva, D.V., et al., Oxytocin: coevolution of human and domesticated animals, Russ. J. Genet.: Appl. Res., 2016, vol. 7, no. 3, pp. 235—242. https://doi.org/10.1134/S2079059717030042

    Article  Google Scholar 

  118. Kis, A., Ciobica, A., and Topál, J., The effect of oxytocin on human-directed social behaviour in dogs (Canis familiaris), Horm. Behav., 2017, vol. 94, pp. 40—52. https://doi.org/10.1016/j.yhbeh.2017.06.001

    Article  CAS  PubMed  Google Scholar 

  119. Herbeck, Y.E. and Gulevich, R.G., Neuropeptides as facilitators of domestication, Cell Tissue Res., 2019, vol. 375, no. 1, pp. 295—307. https://doi.org/10.1007/s00441-018-2939-2

    Article  CAS  PubMed  Google Scholar 

  120. Wei, L., Meaney, M.J., Duman, R.S., et al., Affiliative behavior requires juvenile, but not adult neurogenesis, J. Neurosci., 2011, vol. 31, no. 40, pp. 14335—14345. https://doi.org/10.1523/jneurosci.1333-11.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Koch, I.J., Clark, M.M., Thompson, M.J., et al., The concerted impact of domestication and transposon insertions on methylation patterns between dogs and grey wolves, Mol. Ecol., 2016, vol. 25, no. 8, pp. 1838—1855. https://doi.org/10.1111/mec.13480

    Article  CAS  PubMed Central  Google Scholar 

  122. Barker, G. and Goucher, C., The Cambridge World History, volume II: A World with Agriculture, 12 000 BCE—500 CE, Cambridge: Cambridge Univ. Press, 2015.

    Google Scholar 

  123. Flannery, K.V., Origins and ecological effects of early domestication in Iran and the Near East, in The Domestication and Exploitation of Plants and Animals, London: Duckworth, 1969, pp. 73—100.

    Google Scholar 

  124. Arendt, M., Fall, T., Lindblad-Toh, K., et al., Amylase activity is associated with AMY2B copy numbers in dog: implications for dog domestication, diet and diabetes, Anim. Genet., 2014, vol. 45, no. 5, pp. 716—722. https://doi.org/10.1111/age.12179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Arendt, M., Cairns, K.M., Ballard, J.W.O., et al., Diet adaptation in dog reflects spread of prehistoric agriculture, Heredity, 2016, vol. 117, no. 5, pp. 301—306. https://doi.org/10.1038/hdy.2016.48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Zeder, M.A., Archaeological approaches to documenting animal domestication, in Documenting Domestication: New Genetic and Archaeological Paradigms, Berkeley: Univ. California Press, 2006, pp. 171—180.

    Google Scholar 

  127. Uehara, M., Yashiro, K., Mamiya, S., et al., CYP26A1 and CYP26C1 cooperatively regulate anterior—posterior patterning of the developing brain and the production of migratory cranial neural crest cells in the mouse, Dev. Biol., 2007, vol. 302, no. 2, pp. 399—411. https://doi.org/10.1016/j.ydbio.2006.09.045

    Article  CAS  PubMed  Google Scholar 

  128. Maclean, G., Dollé, P., and Petkovich, M., Genetic disruption of CYP26B1 severely affects development of neural crest derived head structures, but does not compromise hindbrain patterning, Dev. Dyn., 2009, vol. 238, no. 3, pp. 732—745. https://doi.org/10.1002/dvdy.21878

    Article  CAS  PubMed  Google Scholar 

  129. Morrison, V.E., Smith, V.N., and Huang, J.K., Retinoic acid is required for oligodendrocyte precursor cell production and differentiation in the postnatal mouse corpus callosum, Eneuro, 2020, vol. 7, no. 1, pp. 1—18. https://doi.org/10.1523/eneuro.0270-19.2019

    Article  CAS  Google Scholar 

  130. Zhang, Y., Crofton, E.J., Smith, T.E., et al., Manipulation of retinoic acid signaling in the nucleus accumbens shell alters rat emotional behavior, Behav. Brain Res., 2019, vol. 376, p. 112177. https://doi.org/10.1016/j.bbr.2019.112177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are thankful to A.V. Vladimirova, L.V. Meister, L.N. Antimoniy and T.V. Pivovarova of the Federal Research Center Institute of Cytology and Genetics, SB RAS, for their assistance in preparing this manuscript.

Funding

This research was supported by a grant from the Russian Foundation for Basic Research under scientific program no. 19-14-50414.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L. N. Trut or Yu. E. Herbeck.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trut, L.N., Kharlamova, A.V., Pilipenko, A.S. et al. The Fox Domestication Experiment and Dog Evolution: A View Based on Modern Molecular, Genetic, and Archaeological Data. Russ J Genet 57, 778–794 (2021). https://doi.org/10.1134/S1022795421070140

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795421070140

Keywords:

Navigation