Skip to main content
Log in

Finding the Cause of Hereditary Disease in a Family with Adenomatous Polyposis: Why It Is Important to Accumulate Whole Exome Sequencing Data in the Russian Population

  • HUMAN GENETICS
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

With the aim to find the genetic cause of adenomatous polyposis, DNA samples from six members of the same family (three affected patients, two healthy individuals, and one individual with unknown disease status) were examined via whole exome sequencing and segregation analysis. Previously, no APC/MutYH mutations were found in one patient by Sanger sequencing despite all the symptoms of adenomatous polyposis syndrome. As a result of bioinformatic analysis of data obtained from four blood relatives (three affected patients and one individual with unknown disease status), the mutation in the NSUN7 gene was observed, which was not previously associated with the development of adenomatous polyposis. However, subsequently, the population frequency of this genetic variant in Russia appeared to be significantly higher than the incidence of adenomatous polyposis itself. Additional bioinformatic analysis of copy number variation (CNV) revealed previously undescribed large heterozygous deletion in three patients, which included exons 2–16 of the APC gene and regions of the SRP19 and REEP5 genes, which was subsequently confirmed by Multiplex Ligation-dependent Probe Amplification (MLPA). The conducted molecular-genetic study demonstrated the need to develop and constantly update the national database with variants detected under high-throughput sequencing. In addition, the necessity to search for large deletions in the APC gene in Russian patients with adenomatous polyposis has also been established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Groden, J., Thliveris, A., Samowitze, W., et al., Identification and characterization of the familial adenomatous polyposis coli gene, Cell, 1991, vol. 66, no. 3, pp. 589—600. https://doi.org/10.1016/0092-8674(81)90021-0

    Article  CAS  PubMed  Google Scholar 

  2. Tsukanov, A.S., Shelygin, Yu.A., Frolov, S.A., and Kuz’minov, A.M., Familial colorectal adenomatous polyposis, Khirurg, 2017, no. 3, pp. 14—24.

  3. Näthke, I.S., The adenomatous polyposis coli protein: the Achilles heel of the gut epithelium, Ann. Rev. Cell Dev. Biol., 2004, vol. 20, no. 1, pp. 337—366. https://doi.org/10.1146/annurev.cellbio.20.012103.094541

    Article  CAS  Google Scholar 

  4. Rivera, B., González, S., Sánchez-Tomé, E., et al., Clinical and genetic characterization of classical forms of familial adenomatous polyposis: a Spanish population study, Ann. Oncol., 2011, vol. 22, no. 4, pp. 903—909. https://doi.org/10.1093/annonc/mdq465

    Article  CAS  PubMed  Google Scholar 

  5. Tsukanov, A.S., Pospekhova, N.I., Shubin, V.P., et al., Mutations in the APC gene in Russian patients with classic form of familial adenomatous polyposis, Russ. J. Genet., 2017, vol. 53, no. 3, pp. 369—375. https://doi.org/10.1134/S1022795417030139

    Article  CAS  Google Scholar 

  6. Nieuwenhuis, M.H. and Vasen, H.F.A., Correlations between mutation site in APC and phenotype of familial adenomatous polyposis (FAP): a review of the literature, Crit. Rev. Oncol. Hematol., 2007, vol. 61, no. 2, pp. 153—161. https://doi.org/10.1016/j.critrevonc.2006.07.004

    Article  CAS  PubMed  Google Scholar 

  7. Knudsen, A.L., Bisgaard, M.L., and Bulow, S., Attenuated familial adenomatous polyposis (AFAP): a review of the literature, Fam. Cancer, 2003, no. 2(1), pp. 43—55. https://doi.org/10.1023/a:1023286520725

  8. Kastrinos, F. and Syngal, S., Inherited colorectal cancer syndromes, Cancer J., 2011, vol. 17, no. 6, pp. 405—415. https://doi.org/10.1097/ppo.0b013e318237e408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Al-Tassan, N., Chmiel, N.H., Maynarde, J., et al., Inherited variants of MYH associated with somatic G:C–T:A mutations in colorectal tumors, Nat. Genet., 2002, vol. 30, no. 2, pp. 227—232. https://doi.org/10.1038/ng828

    Article  CAS  PubMed  Google Scholar 

  10. Tsukanov, A.S., Pikunov, D.Yu., Toboeva, M.Kh., et al., Difficulties in diagnosing of MUTYH-associated colon polyposis, Koloproktologiya, 2020, vol. 19, no. 1(71), pp. 107—116. https://doi.org/10.33878/2073-7556-2020-19-1-107-116

  11. Lubbe, S.J., Di Bernardo, M.C., Chandler, I.P., and Houlston, R.S., Clinical implications of the colorectal cancer risk associated with MUTYH mutation, J. Clin. Oncol., 2009, vol. 27, no. 24, pp. 3975—3980. https://doi.org/10.1200/JCO.2008.21.6853

    Article  CAS  PubMed  Google Scholar 

  12. Weren, R.D.A., Ligtenberg, M.J.L., Kets, C.M., et al., A germline homozygous mutation in the base-excision repair gene NTHL1 causes adenomatous polyposis and colorectal cancer, Nat. Genet., 2015, vol. 47, no. 6, pp. 668—671. https://doi.org/10.1038/ng.3287

    Article  CAS  PubMed  Google Scholar 

  13. Altaraihi, M., Gerdes, A.-M., and Wadt, K., A new family with a homozygous nonsense variant in NTHL1 further delineated the clinical phenotype of NTHL1-associated polyposis, Hum. Genome Var., 2019, vol. 6, p. 46. https://doi.org/10.1038/s41439-019-0077-3

    Article  PubMed  PubMed Central  Google Scholar 

  14. Palles, C., Cazier, J.-B., Howarth, K.M., et al., Germline mutations affecting the proofreading domains of POLE and POLD1 predispose to colorectal adenomas and carcinomas, Nat. Genet., 2012, vol. 45, no. 2, pp. 136—144. https://doi.org/10.1038/ng.2503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Talseth-Palmer, B.A., The genetic basis of colonic adenomatous polyposis syndromes, Hered. Cancer Clin. Pract., 2017, vol. 15, no. 1, pp. 5—12. https://doi.org/10.1186/s13053-017-0065-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li, H. and Durbin, R., Fast and accurate short read alignment with Burrows—Wheeler transform, Bioinformatics, 2009, vol. 25, pp. 1754—1760. https://doi.org/10.1093/bioinformatics/btp324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li, H., Handsaker, B., Wysoker, A., et al., The sequence alignment/map format and SAMtools, Bioinformatics, 2009, vol. 25, no. 16, pp. 2078—2079. https://doi.org/10.1093/bioinformatics/btp352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Van der Auwera, G.A., Carneiro, M.O., Hartl, C., et al., From fastQ data to high-confidence variant calls: the genome analysis toolkit best practices pipeline, Curr. Protoc. Bioinf., 2013, vol. 43, pp. 1—33. https://doi.org/10.1002/0471250953.bi1110s43

    Article  Google Scholar 

  19. Jiang, Y., Oldridge, D.A., Diskin, S.J., and Zhang, N.R., CODEX: a normalization and copy number variation detection method for whole exome sequencing, Nucleic Acids Res., 2015, vol. 43, no. 6. e39. https://doi.org/10.1093/nar/gku1363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Robinson, J.T., Thorvaldsdóttir, H., Winckler, W., et al., Integrative genome viewer, Nat. Biotechnol., 2011, vol. 29, no. 1, pp. 24—26. https://doi.org/10.1038/nbt.1754.Integrative

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ryzhkova, O.P., Kardymon, O.L., Prokhorchuk, E.B., et al., Guidelines for the interpretation of human DNA sequence data obtained by method of massive parallel sequencing (MPS) (revision of 2018. 2nd version), Med. Genet., 2019, vol. 18, no. 2, pp. 3—23. https://doi.org/10.25557/2073-7998.2019.02.3-23

    Article  Google Scholar 

  22. Brandt, T., Sack, L., Arjona, D., et al., Adapting ACMG/AMP sequence variant classification guidelines for single-gene copy number variants, Genet. Med., 2020, vol. 22, pp. 336—344. https://doi.org/10.1038/s41436-019-0655-2

    Article  PubMed  Google Scholar 

  23. Okonechnikov, K., Golosova, O., Fursov, M., and Unipro, U., GENE: a unified bioinformatics toolkit, Bioinformatics, 2012, vol. 28, no. 8, pp. 1166—1167. https://doi.org/10.1093/bioinformatics/bts091

    Article  CAS  PubMed  Google Scholar 

  24. Khosronezhad, N., Colagar, A.H., and Mortazavi, S.M., The Nsun7 (A11337)-deletion mutation causes reduction of its protein rate and associated with sperm motility defect in infertile men, J. Assist. Reprod. Genet., 2015, vol. 32, no. 5, pp. 807—815. https://doi.org/10.1007/s10815-015-0443-0

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ren, H.Y., Zhong, R., Ding, X.P., et al., Investigation of polymorphisms in exon7 of the NSUN7 gene among Chinese Han men with asthenospermia, Genet. Mol. Res., 2015, vol. 14, no. 3, pp. 9261—9268. https://doi.org/10.4238/2015.august.10.6

    Article  CAS  PubMed  Google Scholar 

  26. Sheng, J.-Q., Wei-Jia Cui, Lei Fu, et al., APC gene mutations in Chinese familial adenomatous polyposis patients, World J. Gastroenterol., 2010, vol. 16, no. 12, pp. 1522—1526. https://doi.org/10.3748/wjg.v16.i12.1522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Stekrova, J., Sulova, M., Kebrdlova, V., et al., Novel APC mutations in Czech and Slovak FAP families: clinical and genetic aspects, BMC Med. Genet., 2007, vol. 8, p. 16. https://doi.org/10.1186/1471-2350-8-16

  28. Fostira, F., Thodi, G., Sandaltzopoulos, R., et al., Mutational spectrum of APC and genotype—phenotype correlations in Greek FAP patients, BMC Cancer, 2010, vol. 10, pp. 389—398. https://doi.org/10.1186/1471-2407-10-389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Michils, G., Tejpar, S., Thoelen, R., et al., Large deletions of the APC gene in 15% of mutation-negative patients with classical polyposis (FAP): a Belgian study, Hum. Mutat., 2005, vol. 25, pp. 125—134. https://doi.org/10.1002/humu.20122

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Tsukanov.

Ethics declarations

Conflict of interest. The authors declare no conflict of interest.

Statement of compliance with standards of research involving humans as subjects. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants involved in the study.

Additional information

Translated by A. Kazantseva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsukanov, A.S., Barinov, A.A., Shubin, V.P. et al. Finding the Cause of Hereditary Disease in a Family with Adenomatous Polyposis: Why It Is Important to Accumulate Whole Exome Sequencing Data in the Russian Population. Russ J Genet 57, 734–739 (2021). https://doi.org/10.1134/S1022795421060120

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795421060120

Keywords:

Navigation