Skip to main content
Log in

Replicative Association Analysis of Genetic Markers of Obesity in the Russian Population

  • SHORT COMMUNICATIONS
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

A replicative analysis of associations with obesity of 53 polymorphic markers associated with the results of genome-wide studies with variability of the body mass index and/or obesity was performed. For the first time in the Russian population, an association with obesity of polymorphic markers rs3810291 of the ZC3H4 gene, rs12940622 of the RPTOR locus, rs1800437 of the GIPR gene, and rs13021737 located in the intergenic region of the genome is shown. Possible molecular mechanisms for the involvement of the studied genes in the pathogenesis of the disease are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Commission on Ending Childhood Obesity, Report of the Commission on Ending Childhood Obesity, World Health Organization, 2016.

    Google Scholar 

  2. GWAS catalog. https://www.ebi.ac.uk/gwas/. Accessed May, 2020.

  3. Trifonova, E.A., Popovich, A.A., Vagaitseva, K.V., et al., The multiplex genotyping method for single-nucleotide polymorphisms of genes associated with obesity and body mass index, Russ. J. Genet., 2019, vol. 55, no. 10, pp. 1282—1293. https://doi.org/10.1134/S1022795419100144

    Article  CAS  Google Scholar 

  4. Mokry, L.E., Ross, S., Timpson, N.J., et al., Obesity and multiple sclerosis: a Mendelian randomization study, PLoS Med., 2016, vol. 13, no. 6. e1002053. https://doi.org/10.1371/journal.pmed.1002053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ahmad, S., Zhao, W., Renström, F., et al., Physical activity, smoking, and genetic predisposition to obesity in people from Pakistan: the PROMIS study, BMC Med. Genet., 2015, no. 16, p. 114. https://doi.org/10.1186/s12881-015-0259-x

  6. Nakayama, K., Miyashita, H., and Iwamoto, S., Seasonal effects of the UCP3 and the RPTOR gene polymorphisms on obesity traits in Japanese adults, J. Physiol. Anthropol., 2014, vol. 33, no. 1, p. 38. https://doi.org/10.1186/1880-6805-33-38

    Article  PubMed  PubMed Central  Google Scholar 

  7. González, A. and Hall, M.N., Nutrient sensing and TOR signaling in yeast and mammals, EMBO J., 2017, vol. 36, no. 4, pp. 397—408. https://doi.org/10.15252/embj.201696010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hancock, A.M., Witonsky, D.B., Gordon, A.S., et al., Adaptations to climate in candidate genes for common metabolic disorders, PLoS Genet., 2008, vol. 4, no. 2. e32. https://doi.org/10.1371/journal.pgen.0040032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sun, C., Southard, C., Witonsky, D.B., et al., Allele-specific down-regulation of RPTOR expression induced by retinoids contributes to climate adaptations, PLoS Genet., 2010, vol. 6, no. 10. e1001178. https://doi.org/10.1371/journal.pgen.1001178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rachdi, L., Balcazar, N., Osorio-Duque, F., et al., Disruption of Tsc2 in pancreatic beta cells induces beta cell mass expansion and improved glucose tolerance in a TORC1-dependent manner, Proc. Natl. Acad. Sci. U.S.A., 2008, vol. 105, no. 27, pp. 9250—9255. https://doi.org/10.1073/pnas.0803047105

    Article  PubMed  PubMed Central  Google Scholar 

  11. GeneCards. https://www.genecards.org. Accessed May, 2020.

  12. Yang, X., Wang, J., Zhou, Z., et al., Silica-induced initiation of circular ZC3H4 RNA/ZC3H4 pathway promotes the pulmonary macrophage activation, FASEB J., 2018, vol. 32, no. 6, pp. 3264—3277. https://doi.org/10.1096/fj.201701118R

    Article  CAS  PubMed  Google Scholar 

  13. Rana, S. and Sultana, A., Association of the variant rs7561317 downstream of the TMEM18 gene with overweight/obesity and related anthropometric traits in a sample of Pakistani population, Biochem. Genet., 2020, vol. 58, no. 2, pp. 257—278. https://doi.org/10.1007/s10528-019-09940-2

    Article  CAS  PubMed  Google Scholar 

  14. Liu, S., Wilson, J.G., Jiang, F., et al., Multi-variant study of obesity risk genes in African Americans: the Jackson Heart Study, Gene, 2016, vol. 593, no. 2, pp. 315—321. https://doi.org/10.1016/j.gene.2016.08.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Felix, J.F., Bradfield, J.P., Monnereau, C., et al., Genome-wide association analysis identifies three new susceptibility loci for childhood body mass index, Hum. Mol. Genet., 2016, vol. 25, no. 2, pp. 389—403. https://doi.org/10.1093/hmg/ddv472

    Article  CAS  PubMed  Google Scholar 

  16. Ruiz-Narváez, E.A., Haddad, S.A., Rosenberg, L., et al., Birth weight modifies the association between central nervous system gene variation and adult body mass index, J. Hum. Genet., 2016, vol. 61, no. 3, pp. 193—198. https://doi.org/10.1038/jhg.2015.139

    Article  PubMed  Google Scholar 

  17. Larder, R., Sim, M.F.M., Gulati, P., et al., Obesity-associated gene TMEM18 has a role in the central control of appetite and body weight regulation, Proc. Natl. Acad. Sci. U.S.A., 2017, vol. 114, no. 35, pp. 9421—9426. https://doi.org/10.1073/pnas.1707310114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rask-Andersen, M., SällmanAlmén, M., Jacobsson, J.A., et al., Determination of obesity associated gene variants related to TMEM18 through ultra-deep targeted re-sequencing in a case—control cohort for pediatric obesity, Genet. Res. (Cambridge), 2015, no. 97. e16. https://doi.org/10.1017/S0016672315000117

  19. Jurvansuu, J.M. and Goldman, A., Obesity risk gene TMEM18 encodes a sequence-specific DNA-binding protein, PLoS One, 2011, vol. 6, no. 9. e25317

    Article  CAS  Google Scholar 

  20. Wang, T., Moon, J.Y., Wu, Y., et al., Pleiotropy of genetic variants on obesity and smoking phenotypes: results from the Oncoarray Project of the International Lung Cancer Consortium, PLoS One, 2017, vol. 12, no. 9. e0185660. https://doi.org/10.1371/journal.pone.0185660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Vogel, C.I., Scherag, A., Brönner, G., et al., Gastric inhibitory polypeptide receptor: association analyses for obesity of several polymorphisms in large study groups, BMC Med. Genet., 2009, no. 10, p. 19. https://doi.org/10.1186/1471-2350-10-19

  22. Gasbjerg, L.S., Gabe, M.B.N., Hartmann, B., et al., Glucose-dependent insulinotropic polypeptide (GIP) receptor antagonists as anti-diabetic agents, Peptides, 2018, no. 100, pp. 173—181. https://doi.org/10.1016/j.peptides.2017.11.021

  23. Torekov, S.S., Harsløf, T., Rejnmark, L., et al., A functional amino acid substitution in the glucose-dependent insulinotropic polypeptide receptor (GIPR) gene is associated with lower bone mineral density and increased fracture risk, J. Clin. Endocrinol. Metab., 2014, vol. 99, no. 4, pp. E729—E733. https://doi.org/10.1210/jc.2013-3766

    Article  CAS  PubMed  Google Scholar 

  24. Nitz, I., Fisher, E., Weikert, C., et al., Association analyses of GIP and GIPR polymorphisms with traits of the metabolic syndrome, Mol. Nutr. Food Res., 2007, vol. 51, no. 8, pp. 1046—1052. https://doi.org/10.1002/mnfr.200700048

    Article  CAS  PubMed  Google Scholar 

  25. Shalaby, S.M., Zidan, H.E., Shokry, A., et al., Association of incretin receptors genetic polymorphisms with type 2 diabetes mellitus in Egyptian patients, J. Gene Med., 2017, no. 19, pp. 9—10. https://doi.org/10.1002/jgm.2973

Download references

Funding

This study was supported by a grant from the Russian Foundation for Basic Research (project no. 18-04-00758).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Trifonova.

Ethics declarations

Conflict of interest. The authors declare that they have no conflict of interest.

Statement of compliance with standards of research involving humans as subjects. All procedures performed in a study involving people comply with the ethical standards of the institutional and/or national committee for research ethics and the 1964 Helsinki Declaration and its subsequent changes or comparable ethical standards. Informed voluntary consent was obtained from each of the participants.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trifonova, E.A., Popovich, A.A., Makeeva, O.A. et al. Replicative Association Analysis of Genetic Markers of Obesity in the Russian Population. Russ J Genet 57, 620–625 (2021). https://doi.org/10.1134/S1022795421050136

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795421050136

Keywords:

Navigation