Skip to main content
Log in

The Role of Polymorphic Variants of Several Genes of Matrix Metalloproteinases and Their Tissue Inhibitors in the Development of Gastric Cancer

  • HUMAN GENETICS
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The main function of matrix metalloproteinases is the degradation of the extracellular matrix and participation in signal transduction. In addition, it is known that they are involved in all stages of the progression of the tumor process. The activity of metalloproteinases can be regulated by interactions with specific inhibitors of matrix metalloproteinases, so the latter are also able to participate in tumor growth. The genes of matrix metalloproteinases and their inhibitors, as well as many other genes, are characterized by polymorphism. We have analyzed the frequency distribution of the alleles and genotypes of the polymorphic loci rs1799750 and rs494379 of the MMP1 gene, rs2285053 of the MMP2 gene, rs3025058 of the MMP3 gene, rs3918242 and rs17576 of the MMP9 gene, rs2276109 of the MMP12 gene, rs8179090 of the TIMP2 gene, and rs9619311 of the TIMP3 gene in 314 patients with gastric cancer, as well as in 339 unrelated healthy individuals from the Republic of Bashkortostan. It was shown that the markers of the increased risk of developing gastric cancer are the genotypes rs1799750*1G/2G of the MMP1 gene and rs2276109*A/A of the MMP12 gene for Tatars and the genotype rs9619311*T/T of the TIMP3 gene for Russians. The association of the rs494379*G allele of the MMP1 gene and increased risk of developing malignant tumors of the stomach were reported in men. Using the APSampler algorithm, we identified combinations of alleles/genotypes associated with an increased and a reduced risk of developing gastric oncopathologies. The data obtained confirm the influence of the studied polymorphic variants of the genes of matrix metalloproteinases and their tissue inhibitors on the risk of developing gastric cancer and are important for understanding the genetic structure of the studied pathology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Kaprin, A.D., Starinskii, V.V., and Petrova, G.V., Zlokachestvennye novoobrazovaniya v Rossii v 2018 godu (zabolevaemost’ i smertnost’) (Malignant Neoplasms in Russia in 2018 (Morbidity and Mortality)), Moscow: Moskovskii Nauchno-Issledovatel’skii Onkologicheskii Institut imeni P.A. Gertsena, 2019.

  2. Egger, G., Liang, G., Aparicio, A., and Jones, P.A., Epigenetics in human disease and prospects for epigenetic therapy, Nature, 2004, vol. 429, no. 6990, pp. 457—463. https://doi.org/10.1038/nature02625

    Article  CAS  PubMed  Google Scholar 

  3. Ganusevich, I.I., The role of matrix metalloproteinases (MMP) in malignant neoplasms: I. Characteristics of MMP, regulation of their activity, prognostic value, Onkologiya, 2010, vol. 12, no. 1, pp. 10—16.

    Google Scholar 

  4. Korotkova, E.A., Ivannikov, A.A., Ognerubov, N.A., et al., Stomach cancer: molecular and biological characteristics, Vestn. Tomsk. Gos. Univ., 2014, vol. 19, no. 3, pp. 957—969.

    Google Scholar 

  5. Mathew, C.G., The isolation of high molecular weight eukaryotic DNA, Methods Mol. Biol., 1985, vol. 2, pp. 31—34. https://doi.org/10.1385/0-89603-064-4:31

    Article  CAS  PubMed  Google Scholar 

  6. Ponomarenko, I.V., Selection of polymorphic loci for the analysis of associations in genetic and epidemiological studies, Nauchn. Rezul’t.: Med. Farm., 2018, vol. 4, no. 2, pp. 40—54. https://doi.org/10.18413/2313-8955-2018-4-2-0-5

    Article  Google Scholar 

  7. Schlesselman, J., Case-Control Studies: Design, Conduct, Analysis, New York: Oxford Univ. Press, 1982, pp. 58—96.

    Google Scholar 

  8. Favorov, A.V., Andreewski, T.V., Sudomoina, M.A., et al., A Markov chain Monte Carlo technique for identification of combinations of allelic variants underlying complex diseases in humans, Genetics, 2005, vol. 171, no. 4, pp. 2113—2121. https://doi.org/10.1534/genetics.105.048090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cugino, D., Gianfagna, F., Ahrens, W., et al., Polymorphisms of matrix metalloproteinase gene and adiposity indices in European children: results of the IDEFICS study, Int. J. Obes., 2013, vol. 37, no. 12, pp. 1539—1544. https://doi.org/10.1038/ijo.2013.21

    Article  CAS  Google Scholar 

  10. Yarmolinskaya, M.I., Molotkov, A.S., and Denisova, V.M., Matrix metalloproteinases and inhibitors: classification and mechanism of action, Zh. Akush. Zhen. Bolezn., 2012, vol. LXI, no. 1, pp. 113—125.

    Google Scholar 

  11. Zhang, J., Sarkar, S., and Yong, V.W., The chemokine stromal cell derived factor-1 (CXCL12) promotes glioma invasiveness through MT2-matrix metalloproteinase, Carcinogenesis, 2005, vol. 26, no. 12, pp. 2069—2077. https://doi.org/10.1093/carcin/bgi183

    Article  CAS  PubMed  Google Scholar 

  12. Klisho, E.V., Kondakova, I.V., and Choinozov, E.L., Matrix metalloproteinases in oncogenesis, Sib. Onkol. Zh., 2003, no. 2, pp. 62—70.

  13. Liu, H.-Q., Song, S., Wang, J.-H., and Zhang, S.-L., Expression of MMP-3 and TIMP-3 in gastric cancer tissue and its clinical significance, Oncol. Lett., 2011, vol. 2, no. 6, pp. 1319—1322. https://doi.org/10.3892/ol.2011.399

    Article  PubMed  PubMed Central  Google Scholar 

  14. Markelova, E.V., Zdor, V.V., Romanchuk, A.L., and Birko, O.N., Matrix metalloproteinases, their interrelationship with the cytokine system, diagnostic and prognostic potential, Immunopatol., Allergol., Infektol., 2016, no. 2, pp. 11—22. https://doi.org/10.14427/jipai.2016.2.11

  15. Benzing, C., Lam, H., Tsang, C.M., et al., TIMP-2 secreted by monocyte-like cells is a potent suppressor of invadopodia formation in pancreatic cancer cells, BMC Cancer, 2019, vol. 19, no. 1, pp. 1214—1227. https://doi.org/10.1186/s12885-019-6429-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang, K., Wang, G., Huang, S., et al., Association between TIMP-2 gene polymorphism and breast cancer in Han Chinese women, BMC Cancer, 2019, vol. 19, no. 1, pp. 446—454. https://doi.org/10.1186/s12885-019-5655-8

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ondruschka, C., Buhtz, P., Motsch, C., et al., Prognostic value of MMP-2, -9 and TIMP-1, -2 immunoreactive protein at the invasive front in advanced head and neck squamous cell carcinomas, Pathol. Res. Pract., 2002, vol. 198, no. 8, pp. 509—515. https://doi.org/10.1078/S0344-0338(04)70292-7

    Article  PubMed  Google Scholar 

  18. Sharma, K.L., Misra, S., Kumar, A., and Mittal, B., Higher risk of matrix metalloproteinase (MMP-2, 7, 9) and tissue inhibitor of metalloproteinase (TIMP-2) genetic variants to gallbladder cancer, Liver Int., 2012, vol. 32, no. 8, pp. 1278—1286. https://doi.org/10.1111/j.1478-3231.2012.02822.x

    Article  CAS  PubMed  Google Scholar 

  19. Rogova, L.N., Shesternina, N.V., Zamechnik, T.V., and Fastova, I.A., Matrix metalloproteinases and their role in physiological and pathological processes (a review), Vestn. Nov. Med. Tekhnol., 2011, vol. XVIII, no. 2, pp. 86—89.

    Google Scholar 

  20. Miyazaki, T., Kato, H., and Nakajima, M., et al., An immunohistochemical study of TIMP-3 expression in oesophageal squamous cell carcinoma, Br. J. Cancer, 2004, vol. 91, no. 8, pp. 1556—1560. https://doi.org/10.1038/sj.bjc.6602185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rubanovich, A.V. and Khromov-Borisov, N.N., Reproducibility and predictive value of the results in genetic predispositions, Mol. Med., 2014, no. 2, pp. 8—12.

  22. Rutter, J.L., Mitchell, T.I., Butticè, G., et al., A single nucleotide polymorphism in the matrix metalloproteinase-1 promoter creates an Ets binding site and augments transcription, Cancer Res., 1998, vol. 58, no. 23, pp. 5321—5325.

    CAS  PubMed  Google Scholar 

  23. Dey, S., Ghosh, N., Saha, D., et al., Matrix metalloproteinase-1 (MMP-1) promoter polymorphisms are well linked with lower stomach tumor formation in eastern Indian population, PLoS One, 2014, vol. 9, no. 2. e88040. https://doi.org/10.1371/journal.pone.0088040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yu, C., Zhou, Y., Miao, X., et al., Functional haplotypes in the promoter of matrix metalloproteinase-2 predict risk of the occurrence and metastasis of esophageal cancer, Cancer Res., 2004, vol. 64, no. 20, pp. 7622—7628. https://doi.org/10.1158/0008-5472.CAN-04-1521

    Article  CAS  PubMed  Google Scholar 

  25. Shen, W., Xi, H., Wei, B., and Chen, L., The prognostic role of matrix metalloproteinase 2 in gastric cancer: a systematic review with meta-analysis, J. Cancer Res. Clin. Oncol., 2014, vol. 140, no. 6, pp. 1003—1009. https://doi.org/10.1007/s00432-014-1630-6

    Article  CAS  PubMed  Google Scholar 

  26. Zhang, D.Y., Wang, J., Zhang, G.Q., et al., Correlations of MMP-2 and TIMP-2 gene polymorphisms with the risk and prognosis of gastric cancer, Int. J. Clin. Exp. Med., 2015, vol. 8, no. 11, pp. 20391—20401.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Ye, S., Eriksson, P., Hamsten, A., et al., Progression of coronary atherosclerosis is associated with a common genetic variant of the human stromelysin-1 promoter which results in reduced gene expression, J. Biol. Chem., 1996, vol. 271, no. 22, pp. 13055—13060. https://doi.org/10.1074/jbc.271.22.13055

    Article  CAS  PubMed  Google Scholar 

  28. Dey, S., Stalin, S., Gupta, A., et al., Matrix metalloproteinase3 gene promoter polymorphisms and their haplotypes are associated with gastric cancer risk in eastern Indian population, Mol. Carcinog., 2012, vol. 51, no. 1, pp. E42—E53. https://doi.org/10.1002/mc.21837

    Article  CAS  PubMed  Google Scholar 

  29. Zhang, B., Ye, S., Herrmann, S.M., et al., Functional polymorphism in the regulatory region of gelatinase B gene in relation to severity of coronary atherosclerosis, Circulation, 1999, vol. 99, no. 14, pp. 1788—1794. https://doi.org/10.1161/01.cir.99.14.1788

    Article  CAS  PubMed  Google Scholar 

  30. Peng, Z., Jia, J., Gong, W., et al., The association of matrix metalloproteinase-9 promoter polymorphisms with gastric cancer risk: a meta-analysis, Oncotarget, 2017, vol. 8, no. 58, pp. 99024—99032. https://doi.org/10.18632/oncotarget.20931

    Article  PubMed  PubMed Central  Google Scholar 

  31. Okada, R., Naito, M., Hattori, Y., et al., Matrix metalloproteinase 9 gene polymorphisms are associated with a multiple family history of gastric cancer, Gastric Cancer, 2017, vol. 20, no. 2, pp. 246—253. https://doi.org/10.1007/s10120-016-0608-2

    Article  CAS  PubMed  Google Scholar 

  32. Jormsjö, S., Ye, S., Moritz, J., et al., Allele-specific regulation of matrix metalloproteinase-12 gene activity is associated with coronary artery luminal dimensions in diabetic patients with manifest coronary artery disease, Circ. Res., 2000, vol. 86, no. 9, pp. 998—1003. https://doi.org/10.1161/01.res.86.9.998

    Article  PubMed  Google Scholar 

  33. Chen, S.-S., Song, J., Tu, X.-Y., et al., The association between MMP-12 82 A/G polymorphism and susceptibility to various malignant tumors: a meta-analysis, Int. J. Clin. Exp. Med., 2015, vol. 8, no. 7, pp. 10845—10854.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. VAN Nguyen, S., Skarstedt, M., Löfgren, S., et al., Gene polymorphism of matrix metalloproteinase-12 and -13 and association with colorectal cancer in Swedish patients, Anticancer Res., 2013, vol. 33, no. 8, pp. 3247—3250.

    CAS  PubMed  Google Scholar 

  35. Pençe, S., Özbek, E., Ozan Tiryakioğlu, N., et al., rs3918242 variant genotype frequency and increased TIMP-2 and MMP-9 expression are positively correlated with cancer invasion in urinary bladder cancer, Cell. Mol. Biol. (Noisy-le-Grand), 2017, vol. 63, no. 9, pp. 46—52. https://doi.org/10.14715/cmb/2017.63.9.9

    Article  Google Scholar 

  36. Yang, L., Gu, H.-J., Zhu, H.-J., et al., Tissue inhibitor of metalloproteinase-2 G-418C polymorphism is associated with an increased risk of gastric cancer in a Chinese population, Eur. J. Surg. Oncol., 2008, vol. 34, no. 6, pp. 636—641. https://doi.org/10.1016/j.ejso.2007.09.003

    Article  CAS  PubMed  Google Scholar 

  37. Tsai, H.-T., Hsieh, M.-J., Chiou, H.-L., et al., TIMP-3 ‒1296 T>C and TIMP-4 –55 T>C gene polymorphisms play a role in the susceptibility of hepatocellular carcinoma among women, Tumour Biol., 2014, vol. 35, no. 9, pp. 8999—9007. https://doi.org/10.1007/s13277-014-2170-z

    Article  CAS  PubMed  Google Scholar 

  38. Wieczorek, E., Reszka, E., Jablonowski, Z., et al., Genetic polymorphisms in matrix metalloproteinases (MMPs) and tissue inhibitors of MPs (TIMPs), and bladder cancer susceptibility, BJU Int., 2013, vol. 112, no. 8, pp. 1207—1214. https://doi.org/10.1111/bju.12230

    Article  CAS  PubMed  Google Scholar 

  39. Rahimi, Z., Yari, K., and Rahimi, Z., Matrix metalloproteinase-9 –1562T allele and its combination with MMP-2 –735C allele are risk factors for breast cancer, Asian Pac. J. Cancer Prev., 2015, vol. 16, no. 3, pp. 1175—1179. https://doi.org/10.7314/apjcp.2015.16.3.1175

    Article  PubMed  Google Scholar 

  40. Kubben, F.J., Sier, C.F., Meijer, M.J., et al., Clinical impact of MMP and TIMP gene polymorphisms in gastric cancer, Br. J. Cancer., 2006, vol. 95, no. 6, pp. 744—751. https://doi.org/10.1038/sj.bjc.6603307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The study was supported by the Russian Foundation for Basic Research (grant № 17-44-020497 р_а) and the Federal Agency for Scientific Organizations program for support the bioresource collections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. F. Gallyamova.

Ethics declarations

Conflict of interest. The authors declare no conflict of interest.

Statement of compliance with standards of research involving humans as subjects. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants involved in the study.

Additional information

Translated by A. Kazantseva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gallyamova, L.F., Nurgalieva, A.K., Khidiyatov, I.I. et al. The Role of Polymorphic Variants of Several Genes of Matrix Metalloproteinases and Their Tissue Inhibitors in the Development of Gastric Cancer. Russ J Genet 57, 607–619 (2021). https://doi.org/10.1134/S1022795421050021

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795421050021

Keywords:

Navigation