Skip to main content
Log in

The Role of Genetic Factors in Endocrine Tissues Development and Its Regulation In Vivo and In Vitro

  • REVIEWS AND THEORETICAL ARTICLES
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Endocrine cells can be fully functional after heterotopic transplantation into mammals, which makes them a promising tool for regenerative medicine. However, to date, cellular therapy for endocrine diseases is limited by the inability to efficiently and stably obtain endocrine cells in vitro. The review focuses on current knowledge of the molecular genetic mechanisms involved in embryonic development of mouse and human endocrine tissues, as well as the key genetic factors regulating the differentiation of pluripotent stem cells (PSCs) into the endocrine lineage in vitro, using the example of parathyroid cells. The data presented make it possible to suggest an alternative approach to the PSCs differentiation toward parathyroid cells based on genetic engineering by inducing endogenous expression of key differentiation factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Zhang, Y., Yin, C., Zhang, T., et al., CRISPR/gRNA-directed synergistic activation mediator (SAM) induces specific, persistent and robust reactivation of the HIV-1 latent reservoirs, Sci. Rep., 2015, vol. 5, no. 1, article number 16277. https://doi.org/10.1038/srep16277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Xiao, X., Guo, P., Shiota, C., et al., Endogenous reprogramming of alpha cells into beta cells, induced by viral gene therapy, reverses autoimmune diabetes, Cell Stem Cell, 2018, vol. 22, no. 1, pp. 78—90. https://doi.org/10.1016/j.stem.2017.11.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Nowotschin, S., Hadjantonakis, A.-K., and Campbell, K., The endoderm: a divergent cell lineage with many commonalities, Development, 2019, vol. 146, no. 11. dev150920. https://doi.org/10.1242/dev.150920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Barresi, M.G.F. and Gilbert, S.F., Developmental Biology, Oxford: Oxford Univ. Press, 2019, 12th ed.

    Google Scholar 

  5. Adams, M.S. and Bronner-Fraser, M., Review: the role of neural crest cells in the endocrine system, Endocr. Pathol., 2009, vol. 20, no. 2, pp. 92—100. https://doi.org/10.1007/s12022-009-9070-6

    Article  CAS  PubMed  Google Scholar 

  6. De Felice, M. and Di Lauro, R., Thyroid development and its disorders: genetics and molecular mechanisms, Endocr. Rev., 2004, vol. 25, no. 5, pp. 722—746. https://doi.org/10.1210/er.2003-0028

    Article  CAS  PubMed  Google Scholar 

  7. Nilsson, M. and Fagman, H., Development of the thyroid gland, Development, 2017, vol. 144, no. 12, pp. 2123—2140. https://doi.org/10.1242/dev.145615

    Article  CAS  PubMed  Google Scholar 

  8. Sadler, T.W., Langman’s Medical Embryology, Lippincott Williams and Wilkins, 2018, 14th ed.

    Google Scholar 

  9. Pan, F.C. and Brissova, M., Pancreas development in humans, Curr. Opin. Endocrinol., Diabetes Obes., 2014, vol. 21, no. 2, pp. 77—82. https://doi.org/10.1097/MED.0000000000000047

    Article  CAS  Google Scholar 

  10. Jennings, R.E., Berry, A.A., Strutt, J.P., et al., Human pancreas development, Development, 2015, vol. 142, no. 18, pp. 3126—3137. https://doi.org/10.1242/dev.120063

    Article  CAS  PubMed  Google Scholar 

  11. Wilkinson, D.G., Bhatt, S., and Herrmann, B.G., Expression pattern of the mouse T gene and its role in mesoderm formation, Nature, 1990, vol. 343, no. 6259, pp. 657—659. https://doi.org/10.1038/343657a0

    Article  CAS  PubMed  Google Scholar 

  12. Viotti, M., Nowotschin, S., and Hadjantonakis, A.-K., SOX17 links gut endoderm morphogenesis and germ layer segregation, Nat. Cell Biol., 2014, vol. 16, no. 12, pp. 1146—1156. https://doi.org/10.1038/ncb3070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lickert, H., Kutsch, S., Kanzler, B., et al., Formation of multiple hearts in mice following deletion of beta-catenin in the embryonic endoderm, Dev. Cell, 2002, vol. 3, no. 2, pp. 171—181. https://doi.org/10.1016/s1534-5807(02)00206-x

    Article  CAS  PubMed  Google Scholar 

  14. Tada, S., Era, T., Furusawa, C., et al., Characterization of mesendoderm: a diverging point of the definitive endoderm and mesoderm in embryonic stem cell differentiation culture, Development, 2005, vol. 132, no. 19, pp. 4363—4374. https://doi.org/10.1242/dev.02005

    Article  CAS  PubMed  Google Scholar 

  15. David, N.B. and Rosa, F.M., Cell autonomous commitment to an endodermal fate and behaviour by activation of Nodal signaling, Development, 2001, vol. 128, no. 20, pp. 3937—3947.

    CAS  PubMed  Google Scholar 

  16. Lowe, L.A., Yamada, S., and Kuehn, M.R., Genetic dissection of nodal function in patterning the mouse embryo, Development, 2001, vol. 128, no. 10, pp. 1831—1843.

    CAS  PubMed  Google Scholar 

  17. Shen, M.M., Nodal signaling: developmental roles and regulation, Development, 2007, vol. 134, no. 6, pp. 1023—1034. https://doi.org/10.1242/dev.000166

    Article  CAS  PubMed  Google Scholar 

  18. Charney, R.M., Forouzmand, E., Cho, J.S., et al., Foxh1 occupies cis-regulatory modules prior to dynamic transcription factor interactions controlling the mesendoderm gene program, Dev. Cell, 2017, vol. 40, no. 6, pp. 595—607. Е4.https://doi.org/10.1016/j.devcel.2017.02.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yang, Y.-P., Anderson, R.M., and Klingensmith, J., BMP antagonism protects Nodal signaling in the gastrula to promote the tissue interactions underlying mammalian forebrain and craniofacial patterning, Hum. Mol. Genet., 2010, vol. 19, no. 15, pp. 3030—3042. https://doi.org/10.1093/hmg/ddq208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Loh, K.M., Ang, L.T., Zhang, J., et al., Efficient endoderm induction from human pluripotent stem cells by logically directing signals controlling lineage bifurcations, Cell Stem Cell, 2014, vol. 14, no. 2, pp. 237—252. https://doi.org/10.1016/j.stem.2013.12.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Vincent, S.D., Dunn, N.R., Hayashi, S., et al., Cell fate decisions within the mouse organizer are governed by graded Nodal signals, Genes Dev., 2003, vol. 17, no. 13, pp. 1646—1662. https://doi.org/10.1101/gad.1100503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lenhart, K.F., Holtzman, N.G., Williams, J.R., et al., Integration of nodal and BMP signals in the heart requires FoxH1 to create left-right differences in cell migration rates that direct cardiac asymmetry, PLoS Genet., 2013, vol. 9, no. 1. e1003109. https://doi.org/10.1371/journal.pgen.1003109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kiecker, C., Bates, T., and Bell, E., Molecular specification of germ layers in vertebrate embryos, Cell. Mol. Life Sci., 2016, vol. 73, no. 5, pp. 923—947. https://doi.org/10.1007/s00018-015-2092-y

    Article  CAS  PubMed  Google Scholar 

  24. Kanai-Azuma, M., Kanai, Y., Gad, J.M., et al., Depletion of definitive gut endoderm in Sox17-null mutant mice, Development, 2002, vol. 129, no. 10, pp. 2367—2379.

    CAS  PubMed  Google Scholar 

  25. Viotti, M., Niu, L., Shi, S.-H., et al., Role of the gut endoderm in relaying left-right patterning in mice, PLoS Biol., 2012, vol. 10, no. 3. e1001276. https://doi.org/10.1371/journal.pbio.1001276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. McKnight, K.D., Hou, J., and Hoodless, P.A., Foxh1 and Foxa2 are not required for formation of the midgut and hindgut definitive endoderm, Dev. Biol., 2010, vol. 337, no. 2, pp. 471—481. https://doi.org/10.1016/j.ydbio.2009.10.040

    Article  CAS  PubMed  Google Scholar 

  27. Davenport, C., Diekmann, U., Budde, I., et al., Anterior-posterior patterning of definitive endoderm generated from human embryonic stem cells depends on the differential signaling of retinoic acid, Wnt-, and BMP-signaling, Stem Cells, 2016, vol. 34, no. 11, pp. 2635—2647. https://doi.org/10.1002/stem.2428

    Article  CAS  PubMed  Google Scholar 

  28. Zorn, A.M. and Wells, J.M., Vertebrate endoderm development and organ formation, Annu. Rev. Cell Dev. Biol., 2009, vol. 25, pp. 221—251. https://doi.org/10.1146/annurev.cellbio.042308.113344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gordillo, M., Evans, T., and Gouon-Evans, V., Orchestrating liver development, Development, 2015, vol. 142, no. 12, pp. 2094—2108. https://doi.org/10.1242/dev.114215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sherwood, R.I., Chen, T.-Y.A., and Melton, D.A., Transcriptional dynamics of endodermal organ formation, Dev. Dyn., 2009, vol. 238, no. 1, pp. 29—42. https://doi.org/10.1002/dvdy.21810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mark, M., Ghyselinck, N.B., and Chambon, P., Function of retinoic acid receptors during embryonic development, Nucl. Recep. Signaling, 2009, vol. 7. e002. https://doi.org/10.1621/nrs.07002

    Article  CAS  Google Scholar 

  32. Bayha, E., Jørgensen, M.C., Serup, P., et al., Retinoic acid signaling organizes endodermal organ specification along the entire antero-posterior axis, PLoS One, 2009, vol. 4, no. 6. e5845. https://doi.org/10.1371/journal.pone.0005845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wang, Z., Dollé, P., Cardoso, W.V., et al., Retinoic acid regulates morphogenesis and patterning of posterior foregut derivatives, Dev. Biol., 2006, vol. 297, no. 2, pp. 433—445. https://doi.org/10.1016/j.ydbio.2006.05.019

    Article  CAS  PubMed  Google Scholar 

  34. Wendling, O., Dennefeld, C., Chambon, P., et al., Retinoid signaling is essential for patterning the endoderm of the third and fourth pharyngeal arches, Development, 2000, vol. 127, no. 8, pp. 1553—1562.

    CAS  PubMed  Google Scholar 

  35. Roberts, D.J., Johnson, R.L., Burke, A.C., et al., Sonic hedgehog is an endodermal signal inducing Bmp-4 and Hox genes during induction and regionalization of the chick hindgut, Development, 1995, vol. 121, no. 10, pp. 3163—3174.

    CAS  PubMed  Google Scholar 

  36. Faure, S. and de Santa Barbara, P., Molecular embryology of the foregut, J. Pediatr. Gastroenterol. Nutr., 2011, vol. 52, pp. S2—S3. https://doi.org/10.1097/MPG.0b013e3182105a1a

    Article  PubMed  PubMed Central  Google Scholar 

  37. Goss, A.M., Tian, Y., Tsukiyama, T., et al., Wnt2/2b and beta-catenin signaling are necessary and sufficient to specify lung progenitors in the foregut, Dev. Cell, 2009, vol. 17, no. 2, pp. 290—298. https://doi.org/10.1016/j.devcel.2009.06.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Domyan, E.T., Ferretti, E., Throckmorton, K., et al., Signaling through BMP receptors promotes respiratory identity in the foregut via repression of Sox2, Development, 2011, vol. 138, no. 5, pp. 971—981. https://doi.org/10.1242/dev.053694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Billmyre, K.K., Hutson, M., and Klingensmith, J., One shall become two: separation of the esophagus and trachea from the common foregut tube, Dev. Dyn., 2015, vol. 244, no. 3, pp. 277—288. https://doi.org/10.1002/dvdy.24219

    Article  PubMed  Google Scholar 

  40. Minoo, P., Su, G., Drum, H., et al., Defects in tracheoesophageal and lung morphogenesis in Nkx2.1(–/–) mouse embryos, Dev. Biol., 1999, vol. 209, no. 1, pp. 60—71. https://doi.org/10.1006/dbio.1999.9234

    Article  CAS  PubMed  Google Scholar 

  41. Lindsay, E.A., Vitelli, F., Su, H., et al., Tbx1 haploinsufficiency in the DiGeorge syndrome region causes aortic arch defects in mice, Nature, 2001, vol. 410, no. 6824, pp. 97—101. https://doi.org/10.1038/35065105

    Article  CAS  PubMed  Google Scholar 

  42. Kelly, R.G., Jerome-Majewska, L.A., and Papaioannou, V.E., The del22q11.2 candidate gene Tbx1 regulates branchiomeric myogenesis, Hum. Mol. Genet., 2004, vol. 13, no. 22, pp. 2829—2840. https://doi.org/10.1093/hmg/ddh304

    Article  CAS  PubMed  Google Scholar 

  43. Zhang, Z., Huynh, T., and Baldini, A., Mesodermal expression of Tbx1 is necessary and sufficient for pharyngeal arch and cardiac outflow tract development, Development, 2006, vol. 133, no. 18, pp. 3587—3595. https://doi.org/10.1242/dev.02539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Garg, V., Yamagishi, C., Hu, T., et al., Tbx1, a DiGeorge syndrome candidate gene, is regulated by Sonic Hedgehog during pharyngeal arch development, Dev. Biol., 2001, vol. 235, no. 1, pp. 62—73. https://doi.org/10.1006/dbio.2001.0283

    Article  CAS  PubMed  Google Scholar 

  45. Choe, C.P. and Crump, J.G., Tbx1 controls the morphogenesis of pharyngeal pouch epithelia through mesodermal Wnt11r and Fgf8a, Development, 2014, vol. 141, no. 18, pp. 3583—3593. https://doi.org/10.1242/dev.111740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kameda, Y., Ito, M., Nishimaki, T., et al., FRS2alpha is required for the separation, migration, and survival of pharyngeal-endoderm derived organs including thyroid, ultimobranchial body, parathyroid, and thymus, Dev. Dyn., 2009, vol. 238, no. 3, pp. 503—513. https://doi.org/10.1002/dvdy.21867

    Article  PubMed  Google Scholar 

  47. Grevellec, A. and Tucker, A.S., The pharyngeal pouches and clefts: development, evolution, structure and derivatives, Semin. Cell Dev. Biol., 2010, vol. 21, no. 3, pp. 325—332. https://doi.org/10.1016/j.semcdb.2010.01.022

    Article  PubMed  Google Scholar 

  48. Gordon, J. and Manley, N.R., Mechanisms of thymus organogenesis and morphogenesis, Development, 2011, vol. 138, no. 18, pp. 3865—3878. https://doi.org/10.1242/dev.059998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gordon, J., Bennett, A.R., Blackburn, C.C., et al., Gcm2 and Foxn1 mark early parathyroid- and thymus-specific domains in the developing third pharyngeal pouch, Mech. Dev., 2001, vol. 103, nos. 1—2, pp. 141—143. https://doi.org/10.1016/s0925-4773(01)00333-1

    Article  CAS  PubMed  Google Scholar 

  50. Kebebew, E., Peng, M., Wong, M.G., et al., GCMB gene, a master regulator of parathyroid gland development, expression, and regulation in hyperparathyroidism, Surgery, 2004, vol. 136, no. 6, pp. 1261—1266. https://doi.org/10.1016/j.surg.2004.06.056

    Article  PubMed  Google Scholar 

  51. Manley, N.R., Embryology of the parathyroid glands, in Hypoparathyroidism, Springer-Verlag, 2015, pp. 11—18. https://doi.org/10.1007/978-88-470-5376-2_2

  52. Maret, A., Ding, C., Kornfield, S.L., et al., Analysis of the GCM2 gene in isolated hypoparathyroidism: a molecular and biochemical study, J. Clin. Endocrinol. Metab., 2008, vol. 93, no. 4, pp. 1426—1432. https://doi.org/10.1210/jc.2007-1783

    Article  CAS  PubMed  Google Scholar 

  53. Guan, B., Welch, J.M., Sapp, J.C., et al., GCM2-activating mutations in familial isolated hyperparathyroidism, Am. J. Hum. Genet., 2016, vol. 99, no. 5, pp. 1034—1044. https://doi.org/10.1016/j.ajhg.2016.08.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Correa, P., Akerström, G., and Westin, G., Underexpression of Gcm2, a master regulatory gene of parathyroid gland development, in adenomas of primary hyperparathyroidism, Clin. Endocrinol., 2002, vol. 57, no. 4, pp. 501—505. https://doi.org/10.1046/j.1365-2265.2002.01627.x

    Article  CAS  Google Scholar 

  55. Grevellec, A., Graham, A., and Tucker, A.S., Shh signalling restricts the expression of Gcm2 and controls the position of the developing parathyroids, Dev. Biol., 2011, vol. 353, no. 2, pp. 194—205. https://doi.org/10.1016/j.ydbio.2011.02.012

    Article  CAS  PubMed  Google Scholar 

  56. Yamagishi, H., Tbx1 is regulated by tissue-specific forkhead proteins through a common Sonic hedgehog-responsive enhancer, Genes Dev., 2003, vol. 17, no. 2, pp. 269—281. https://doi.org/10.1101/gad.1048903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bain, V.E., Gordon, J., O’Neil, J.D., et al., Tissue-specific roles for sonic hedgehog signaling in establishing thymus and parathyroid organ fate, Development, 2016, vol. 143, no. 21, pp. 4027—4037. https://doi.org/10.1242/dev.141903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ohyama, T. and Groves, A.K., Expression of mouse Foxi class genes in early craniofacial development, Dev. Dyn., 2004, vol. 231, no. 3, pp. 640—646. https://doi.org/10.1002/dvdy.20160

    Article  CAS  PubMed  Google Scholar 

  59. Hasten, E. and Morrow, B.E., Tbx1 and Foxi3 genetically interact in the pharyngeal pouch endoderm in a mouse model for 22q11.2 deletion syndrome, PLoS Genet., 2019, vol. 15, no. 8. e1008301. https://doi.org/10.1371/journal.pgen.1008301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Edlund, R.K., Ohyama, T., Kantarci, H., et al., Foxi transcription factors promote pharyngeal arch development by regulating formation of FGF signaling centers, Dev. Biol., 2014, vol. 390, no. 1, pp. 1—13. https://doi.org/10.1016/j.ydbio.2014.03.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Su, D., Ellis, S., Napier, A., et al., Hoxa3 and Pax1 regulate epithelial cell death and proliferation during thymus and parathyroid organogenesis, Dev. Biol., 2001, vol. 236, no. 2, pp. 316—329. https://doi.org/10.1006/dbio.2001.0342

    Article  CAS  PubMed  Google Scholar 

  62. Manley, N.R., Selleri, L., Brendolan, A., et al., Abnormalities of caudal pharyngeal pouch development in Pbx1 knockout mice mimic loss of Hox3 paralogs, Dev. Biol., 2004, vol. 276, no. 2, pp. 301—312. https://doi.org/10.1016/j.ydbio.2004.08.030

    Article  CAS  PubMed  Google Scholar 

  63. Zou, D., Silvius, D., Davenport, J., et al., Patterning of the third pharyngeal pouch into thymus/parathyroid by Six and Eya1, Dev. Biol., 2006, vol. 293, no. 2, pp. 499—512. https://doi.org/10.1016/j.ydbio.2005.12.015

    Article  CAS  PubMed  Google Scholar 

  64. Gordon, J., Wilson, V.A., Blair, N.F., et al., Functional evidence for a single endodermal origin for the thymic epithelium, Nat. Immunol., 2004, vol. 5, no. 5, pp. 546—553. https://doi.org/10.1038/ni1064

    Article  CAS  PubMed  Google Scholar 

  65. Gardiner, J.R., Jackson, A.L., Gordon, J., et al., Localised inhibition of FGF signalling in the third pharyngeal pouch is required for normal thymus and parathyroid organogenesis, Development, 2012, vol. 139, no. 18, pp. 3456—3466. https://doi.org/10.1242/dev.079400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Gordon, J., Patel, S.R., Mishina, Y., et al., Evidence for an early role for BMP4 signaling in thymus and parathyroid morphogenesis, Dev. Biol., 2010, vol. 339, no. 1, pp. 141—154. https://doi.org/10.1016/j.ydbio.2009.12.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kamitani-Kawamoto, A., Hamada, M., Moriguchi, T., et al., MafB interacts with Gcm2 and regulates parathyroid hormone expression and parathyroid development, J. Bone Miner. Res., 2011, vol. 10, no. 26, pp. 2463—2472. https://doi.org/10.1002/jbmr.458

    Article  CAS  Google Scholar 

  68. Naveh-Many, T. and Silver, J., Transcription factors that determine parathyroid development power PTH expression, Kidney Int., 2018, vol. 93, no. 1, pp. 7—9. https://doi.org/10.1016/j.kint.2017.08.026

    Article  CAS  PubMed  Google Scholar 

  69. Grigorieva, I.V., Mirczuk, S., Gaynor, K.U., et al., Gata3‑deficient mice develop parathyroid abnormalities due to dysregulation of the parathyroid-specific transcription factor Gcm2, J. Clin. Invest., 2010, vol. 120, no. 6, pp. 2144—2155. https://doi.org/10.1172/JCI42021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Peissig, K., Condie, B.G., and Manley, N.R., Embryology of the parathyroid glands, Endocrinol. Metab. Clin. North Am., 2018, vol. 47, no. 4, pp. 733—742. https://doi.org/10.1016/j.ecl.2018.07.002

    Article  PubMed  PubMed Central  Google Scholar 

  71. Van Esch, H., Groenen, P., Nesbit, M.A., et al., GATA3 haplo-insufficiency causes human HDR syndrome, Nature, 2000, vol. 406, no. 6794, pp. 419—422. https://doi.org/10.1038/35019088

    Article  CAS  PubMed  Google Scholar 

  72. Grigorieva, I.V. and Thakker, R.V., Transcription factors in parathyroid development: lessons from hypoparathyroid disorders, Ann. N.Y. Acad. Sci., 2011, vol. 1237, no. 1, pp. 24—38. https://doi.org/10.1111/j.1749-6632.2011.06221.x

    Article  CAS  PubMed  Google Scholar 

  73. Ordóñez, N.G., Value of GATA3 immunostaining in tumor diagnosis: a review, Adv. Anat. Pathol., 2013, vol. 20, no. 5, pp. 352—360. https://doi.org/10.1097/PAP.0b013e3182a28a68

    Article  CAS  PubMed  Google Scholar 

  74. Han, S.-I., Tsunekage, Y., and Kataoka, K., Gata3 cooperates with Gcm2 and MafB to activate parathyroid hormone gene expression by interacting with SP1, Mol. Cell. Endocrinol., 2015, vol. 411, pp. 113—120. https://doi.org/10.1016/j.mce.2015.04.018

    Article  CAS  PubMed  Google Scholar 

  75. Yiangou, L., Ross, A.D.B., Goh, K.J., et al., Human pluripotent stem cell-derived endoderm for modeling development and clinical applications, Cell Stem Cell, 2018, vol. 22, no. 4, pp. 485—499. https://doi.org/10.1016/j.stem.2018.03.016

    Article  CAS  PubMed  Google Scholar 

  76. Cahan, P. and Daley, G.Q., Origins and implications of pluripotent stem cell variability and heterogeneity, Nat. Rev. Mol. Cell Biol., 2013, vol. 14, no. 6, pp. 357—368. https://doi.org/10.1038/nrm3584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Siller, R., Naumovska, E., Mathapati, S., et al., Development of a rapid screen for the endodermal differentiation potential of human pluripotent stem cell lines, Sci. Rep., 2016, vol. 6, article number 37178. https://doi.org/10.1038/srep37178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Li, Q.V., Dixon, G., Verma, N., et al., Genome-scale screens identify JNK-JUN signaling as a barrier for pluripotency exit and endoderm differentiation, Nat. Genet., 2019, vol. 51, pp. 999—1010. https://doi.org/10.1038/s41588-019-0408-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Mou, H., Zhao, R., Sherwood, R., et al., Generation of multipotent lung and airway progenitors from mouse ESCs and patient-specific cystic fibrosis iPSCs, Cell Stem Cell, 2012, vol. 10, no. 5, pp. 385—397. https://doi.org/10.1016/j.stem.2012.01.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wong, A.P., Bear, C.E., Chin, S., et al., Directed differentiation of human pluripotent stem cells into mature airway epithelia expressing functional CFTR protein, Nat. Biotechnol., 2012, vol. 30, no. 9, pp. 876—882. https://doi.org/10.1038/nbt.2328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kearns, N.A., Genga, R.M., Ziller, M., et al., Generation of organized anterior foregut epithelia from pluripotent stem cells using small molecules, Stem Cell Res., 2013, vol. 11, no. 3, pp. 1003—1012. https://doi.org/10.1016/j.scr.2013.06.007

    Article  CAS  PubMed  Google Scholar 

  82. Huang, S.X., Islam, M.N., O’Neill, J., et al., Efficient generation of lung and airway epithelial cells from human pluripotent stem cells, Nat. Biotechnol., 2014, vol. 32, no. 1, pp. 84—91. https://doi.org/10.1038/nbt.2754

    Article  CAS  PubMed  Google Scholar 

  83. Bingham, E.L., Cheng, S.-P., Woods Ignatoski, K.M., et al., Differentiation of human embryonic stem cells to a parathyroid-like phenotype, Stem Cells Dev., 2009, vol. 18, no. 7, pp. 1071—1080.https://doi.org/10.1089/scd.2008.0337

    Article  CAS  PubMed  Google Scholar 

  84. Woods Ignatoski, K.M., Bingham, E.L., Frome, L.K., et al., Differentiation of precursors into parathyroid-like cells for treatment of hypoparathyroidism, Surgery, 2010, vol. 148, no. 6, pp. 1186—1190.https://doi.org/10.1016/j.surg.2010.09.021

    Article  PubMed  Google Scholar 

  85. Green, M.D., Chen, A., Nostro, M.-C., et al., Generation of anterior foregut endoderm from human embryonic and induced pluripotent stem cells, Nat. Biotechnol., 2011, vol. 29, no. 3, pp. 267—272. https://doi.org/10.1038/nbt.1788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by the Russian Foundation for Basic Research (grant no. 19-015-00209-A).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. V. Goliusova or S. L. Kiselev.

Ethics declarations

Conflict of interest. The authors declare that they have no conflicts of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Statement of compliance with standards of research involving humans as subjects. This article does not contain any research involving humans as a subject.

Additional information

Translated by N. Maleeva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goliusova, D.V., Klementieva, N.V., Panova, A.V. et al. The Role of Genetic Factors in Endocrine Tissues Development and Its Regulation In Vivo and In Vitro. Russ J Genet 57, 273–281 (2021). https://doi.org/10.1134/S102279542103008X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102279542103008X

Keywords:

Navigation