Skip to main content
Log in

A Powerful Adaptive Cauchy-Variable Combination Method for Rare-Variant Association Analysis

  • MATHEMATICAL MODELS AND METHODS
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Set-based association analysis has emerged as a popular tool for testing the association of rare variants within a genomic region with complex diseases. However, when only a small proportion of variants are causal, combining the association signals of multiple markers within a genomic region may cause noise due to the inclusion of non-causal variants, which usually decreases the power of a test. Besides, the existing set-based methods are sensitive to the genetic architecture. Therefore, we extend the aggregated Cauchy association test (ACAT) and propose an adaptive Cauchy-variable combination method (AAC). The AAC method adaptively combines Cauchy-variables transformed from variant-level P-values by using the optimal number of P-values that is determined by the data; the AAC method can remove variants with larger P-values. Extensive simulation studies and Genetic Analysis Workshop 19 real data analysis show that AAC is more powerful than the other comparative methods when only a small proportion of variants are causal. And AAC is robust to the varied genetic architecture. In addition, the AAC method may use summary statistics, without requiring the original genotypic and phenotypic data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Visscher, P.M., Brown, M.A., McCarthy, M.I., and Yang, J., Five years of GWAS discovery, Am. J. Hum. Genet., 2012, vol. 90, no. 1, pp. 7—24. https://doi.org/10.1016/j.ajhg.2011.11.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Welter, D., MacArthur, J., Morales, J., et al., The NHGRI GWAS catalog, a curated resource of SNP-trait associations, Nucleic Acids Res., 2018, vol. 42, no. D1, pp. D1001—D1006. https://doi.org/10.1093/nar/gkt1229

    Article  CAS  Google Scholar 

  3. Lee, J.C. and Parkes, M., Genome-wide association studies and Cohn’s disease, Briefings Funct. Genomics, 2011, vol. 10, no. 2, pp. 71—76. https://doi.org/10.1093/bfgp/elr009

    Article  CAS  Google Scholar 

  4. Willer, C.J., Speliotes, E.K., Loos, R.J.F., et al., Six new loci associated with body mass index highlight a neuronal influence on body weight regulation, Nat. Genet., 2009, vol. 41, no. 1, pp. 25—34. https://doi.org/10.1038/ng.287

    Article  CAS  PubMed  Google Scholar 

  5. Maher, B., Personal genomes: the case of the missing heritability, Nature, 2008, vol. 456, no. 7218, pp. 18—21. https://doi.org/10.1038/456018a

    Article  CAS  PubMed  Google Scholar 

  6. McCarthy, M.I., Abecasis, G.R., Cardon, L.R., et al., Genome-wide association studies for complex traits: consensus, uncertainty and challenges, Nat. Rev. Genet., 2008, vol. 9, no. 5, pp. 356—369. https://doi.org/10.1038/nrg2344

    Article  CAS  PubMed  Google Scholar 

  7. Pritchard, J.K. and Cox, N.J., The allelic architecture of human disease genes: common disease—common variant… or not?, Hum. Mol. Genet., 2002, vol. 11, no. 20, pp. 2417—2423. https://doi.org/10.1093/hmg/11.20.2417

    Article  CAS  PubMed  Google Scholar 

  8. Manolio, T.A., Collins, F.S., Cox, N.J., et al., Finding the missing heritability of complex diseases, Nature, 2009, vol. 461, no. 7265, pp. 747—753. https://doi.org/10.1038/nature08494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dering, C., Hemmelmann, C., Pugh, E., and Ziegler, A., Statistical analysis of rare sequence variants: an overview of collapsing methods, Genet. Epidemiol., 2011, vol. 35, no. S1, pp. S12—S17. https://doi.org/10.1002/gepi.20643

    Article  PubMed  PubMed Central  Google Scholar 

  10. Svishcheva, G.R., Belonogova, N.M., Zorkoltseva, I.V., et al., Gene-based association tests using GWAS summary statistics, Bioinformatics, 2019, vol. 35, no. 19, pp. 3701—3708 https://doi.org/10.1093/bioinformatics/btz172

    Article  CAS  PubMed  Google Scholar 

  11. Chapman, J. and Whittaker, J., Analysis of multiple SNPs in a candidate gene or region, Genet. Epidemiol., 2008, vol. 32, no. 6, pp. 560—566. https://doi.org/10.1002/gepi.20330

    Article  PubMed  PubMed Central  Google Scholar 

  12. Fan, R., Wang, Y., Mills, J., et al., Functional linear models for association quantitative traits, Genet. Epidemiol., 2013, vol. 37, no. 7, pp. 726—742. https://doi.org/10.1002/gepi.21757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Svishcheva, G.R., Belonogova, N.M., and Axenovich, T.I., Region-based association test for familial data under functional linear models, PLoS One, 2015, vol. 10, no. 6, pp. e0128999. https://doi.org/10.1371/journal.pone.0128999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chen, H., Meigs, J.B., and Dupuis, J., Sequence kernel association test for quantitative traits in family samples, Genet. Epidemiol., 2012, vol. 37, no. 2, pp. 196—204. https://doi.org/10.1002/gepi.21703

    Article  PubMed  PubMed Central  Google Scholar 

  15. Wu, M.C., Lee, S., Cai, T., et al., Rare-variant association testing for sequencing data with the sequence kernel association test, Am. J. Hum. Genet., 2011, vol. 89, no. 1, pp. 82—93. https://doi.org/10.1016/j.ajhg.2011.05.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lee, S., Emond, M.J., Bamshad, M.J., et al., Optimal unified approach for rare-variant association testing with application to small-sample case—control whole-exome sequencing studies, Am. J. Hum. Genet., 2012, vol. 91, no. 2, pp. 224—237. https://doi.org/10.1016/j.ajhg.2012.06.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wu, B., Guan, W., and Pankow, J.S., On efficient and accurate calculation of significance p-values for sequence kernel association testing of variant set, Ann. Hum. Genet., 2016, vol. 80, no.2, pp. 123—135. https://doi.org/10.1111/ahg.12144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Svishcheva, G.R., A generalized model for combining dependent SNP-level summary statistics and its extensions to statistics of other levels, Sci. Rep., 2019, vol. 9, no. 5461. https://doi.org/10.1038/s41598-019-41827-5

  19. Liu, Y., Chen, S., Li, Z., et al., ACAT: a fast and powerful p value combination method for rare-variant analysis in sequencing studies, Am. J. Hum. Genet., 2019, vol. 104, no. 3, pp. 410—421. https://doi.org/10.1016/j.ajhg.2019.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lee, S., Teslovich, T.M., Boehnke, M., and Lin, X., General framework for meta-analysis of rare variants in sequencing association studies, Am. J. Hum. Genet., 2013, vol. 93, no. 1, pp. 42—53. https://doi.org/10.1016/j.ajhg.2013.05.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sha, Q., Wang, X., Wang, X., and Zhang, S., Detecting association of rare and common variants by testing an optimally weighted combination of variant, Genet. Epidemiol., 2012, vol. 36, no. 6, pp. 561—571. https://doi.org/10.1002/gepi.21649

    Article  PubMed  Google Scholar 

  22. Chen, L., Wang, Y., and Zhou, Y., Association analysis of multiple traits by an approach of combining P values, J. Genet., 2018, vol. 97, no. 1, pp. 79—85. https://doi.org/10.1007/s12041-018-0885-0

    Article  PubMed  Google Scholar 

Download references

Funding

This study was supported by the Natural Science Foundation of Heilongjiang Province of China (LH2019A020), and basic research expenditure of universities in Heilongjiang Province, special fund of Heilongjiang University (KJCX201803 and KJCX201804). The Genetic Analysis Workshops are supported by GAW grant R01 GM031575 from the National Institute of General Medical Sciences. Preparation of the Genetic Analysis Workshop 17 Simulated Exome Dataset was supported in part by NIH R01 MH059490 and used sequencing data from the 1000 Genomes Project (http://www.1000genomes.org). The GAW19 unrelated data were provided by Type 2 Diabetes Genetic Exploration by Next-generation sequencing in Ethnic Samples (T2D-GENES) Project 1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Zhou.

Ethics declarations

The authors declare that they have no conflicts of interest. This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, Y., Zhou, Y., Chen, L. et al. A Powerful Adaptive Cauchy-Variable Combination Method for Rare-Variant Association Analysis. Russ J Genet 57, 238–245 (2021). https://doi.org/10.1134/S1022795421020125

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795421020125

Keywords:

Navigation