Skip to main content
Log in

Variability and Expression Pattern of Phytoene Synthase (PSY) Paralogs in Pepper Species

  • PLANT GENETICS
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

In the present study, the PSY1 and PSY2 homologous genes were identified in five accessions of three pepper species Capsicum annuum, Capsicum chinense, and Capsicum frutescens, differing in fruit pigmentation pattern. Within the group of studied accessions, the variability of PSY1 and PSY2 genomic and cDNA sequences was determined. The PSY1 and PSY2 sequences were 82% similar and differed in the N- and C-terminal NAGLRYSD and KLTSSSL indels, as well as in the conserved motifs characteristic of the PSY2 and PSY1 homologs. The expression of PSY1 and PSY2 was analyzed in leaves, sepals, petals, and ovaries, as well as in the peel and pulp of the fruits at the three stages of ripening in all five analyzed accessions. The maximum level of PSY1 expression was shown in the petals and in the pericarp of mature fruits of C. annuum and C. frutescens accessions. In the C. chinense cv. Pimenta da Neyde, PSY1 was expressed only in leaves. PSY2 transcripts were found in all analyzed organs of all pepper accessions; the maximum level was in the leaves, and the minimum level was in the fruit pericarp. The obtained data suggest that the PSY1 and PSY2 homologs of pepper species retained conserved key functions in the carotenoid synthesis in fruits (PSY1) and photosynthetic tissues (PSY2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Hashimoto, H., Uragami, C., and Cogdell, R.J., Carotenoids and photosynthesis, in Carotenoids in Nature, Stange, C., Ed., Basel: Springer-Verlag, 2016, pp. 111–139.

    Google Scholar 

  2. Nambara, E. and Marion-Poll, A., Abscisic acid biosynthesis and catabolism, Annu. Rev. Plant Biol., 2005, vol. 56, pp. 165–185.

    Article  CAS  Google Scholar 

  3. Stauder, R., Welsch, R., Camagna, M., et al., Strigolactone levels in dicot roots are determined by an ancestral symbiosis-regulated clade of the PHYTOENE SYNTHASE gene family, Front Plant Sci., 2018, vol. 9, article 255. https://doi.org/10.3389/fpls.2018.00255

    Article  PubMed  PubMed Central  Google Scholar 

  4. Sun, T. and Li, L., Toward the ‘golden’ era: the status in uncovering the regulatory control of carotenoid accumulation in plants, Plant Sci., 2020, vol. 290, article 110331. https://doi.org/10.1016/j.plantsci.2019.110331

    Article  CAS  PubMed  Google Scholar 

  5. Rudall, P.J., Colourful cones: how did flower colour first evolve?, J. Exp. Bot., 2020, vol. 71, no. 3, pp. 759–767. https://doi.org/10.1093/jxb/erz479

    Article  CAS  PubMed  Google Scholar 

  6. Dardick, C. and Callahan, A.M., Evolution of the fruit endocarp: molecular mechanisms underlying adaptations in seed protection and dispersal strategies, Front. Plant Sci., 2014, vol. 5, article 284. https://doi.org/10.3389/fpls.2014.00284

    Article  PubMed  PubMed Central  Google Scholar 

  7. Giorio, G., Stigliani, A.L., and D’Ambrosio, C., Phytoene synthase genes in tomato (Solanum lycopersicum L.): new data on the structures, the deduced amino acid sequences and the expression patterns, FEBS J., 2007, vol. 275, pp. 527–535. https://doi.org/10.1111/j.1742-4658.2007.06219.x

    Article  CAS  PubMed  Google Scholar 

  8. Rodriguez-Uribe, L., Guzman, I., Rajapakse, W., Richins, R.D., and O’Connell, M.A., Carotenoid accumulation in orange pigmented Capsicum annuum fruit, regulated at multiple levels, J. Exp. Bot., 2012, vol. 63, pp. 517–526. https://doi.org/10.1093/jxb/err302

    Article  CAS  PubMed  Google Scholar 

  9. Liu, L., Shao, Z., Zhang, M., and Wang, Q., Regulation of carotenoid metabolism in tomato, Mol. Plant, 2015, vol. 8, pp. 28–39. https://doi.org/10.1016/j.molp.2014.11.006

    Article  CAS  PubMed  Google Scholar 

  10. Yoo, H.J., Park, W.J., Lee, G.M., et al., Inferring the genetic determinants of fruit colors in tomato by carotenoid profiling, Molecules, 2017, vol. 22, no. 5, article E764. https://doi.org/10.3390/molecules22050764

    Article  CAS  PubMed  Google Scholar 

  11. Ahrazem, O., Diretto, G., Argandoña Picazo, J., et al., The specialized roles in carotenogenesis and apocarotenogenesis of the phytoene synthase gene family in saffron, Front. Plant Sci., 2019, vol. 10, article 249. https://doi.org/10.3389/fpls.2019.00249

    Article  PubMed  PubMed Central  Google Scholar 

  12. Zhou, X., Welsch, R., Yang, Y., et al., Arabidopsis OR proteins are the major posttranscriptional regulators of phytoene synthase in controlling carotenoid biosynthesis, Proc. Natl. Acad. Sci. U.S.A., 2015, vol. 112, no. 11, pp. 3558–3563. https://doi.org/10.1073/pnas.1420831112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tomato Genome Consortium (Sato, S., Tabata, S., Hirakawa, H., et al.,), The tomato genome sequence provides insights into fleshy fruit evolution, Nature, 2012, vol. 485, pp. 635–641.

    Article  Google Scholar 

  14. Bartley, G.E., Viitanen, P.V., Bacot, K.O., and Scolnik, P.A., A tomato gene expressed during fruit ripening encodes an enzyme of the carotenoid biosynthesis pathway, J. Biol. Chem., 1992, vol. 267, pp. 5036–5039.

    Article  CAS  Google Scholar 

  15. Ducreux, L.J., Morris, W.L., Hedley, P.E., et al., Metabolic engineering of high carotenoid potato tubers containing enhanced levels of b-carotene and lutein, J. Exp. Bot., 2005, vol. 56, pp. 81–89.

    CAS  PubMed  Google Scholar 

  16. Fraser, P.D., Enfissi, E.M., Halket, J.M., et al., Manipulation of phytoene levels in tomato fruit: effects on isoprenoids, plastids, and intermediary metabolism, Plant Cell, 2007, vol. 19, pp. 3194–3211.

    Article  CAS  Google Scholar 

  17. Bartley, G.E. and Scolnik, P.A., cDNA cloning, expression during development, and genome mapping of PSY2, a second tomato gene encoding phytoene synthase, J. Biol. Chem., 1993, vol. 268, pp. 25718–25721.

    Article  CAS  Google Scholar 

  18. Gallagher, C.E., Matthews, P.D., Li, F., and Wurtzel, E.T., Gene duplication in the carotenoid biosynthetic pathway preceded evolution of the grasses, Plant Physiol., 2004, vol. 135, no.3, pp. 1776–1783.

    Article  CAS  Google Scholar 

  19. Fraser, P.D., Schuch, W., and Bramley, P.M., Phytoene synthase from tomato (Lycopersicon esculentum) chloroplasts—partial purification and biochemical properties, Planta, 2000, vol. 211, pp. 361–369.

    Article  CAS  Google Scholar 

  20. Cao, H., Luo, H., Yuan, H., et al., A neighboring aromatic-aromatic amino acid combination governs activity divergence between tomato phytoene synthases, Plant Physiol., 2019, vol. 180, no. 4, pp. 1988–2003. https://doi.org/10.1104/pp.19.00384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Giovannoni, J., Nguyen, C., Ampofo, B., et al., The epigenome and transcriptional dynamics of fruit ripening, Annu. Rev. Plant Biol., 2017, vol. 68, pp. 61–84. https://doi.org/10.1146/annurev-arplant-042916-040906

    Article  CAS  PubMed  Google Scholar 

  22. Peralta, I.E. and Spooner, D.M., History, origin and early cultivation of tomato (Solanaceae), Genetic Improvement of Solanaceous Crops, vol. 2: Tomato, Razdan M.K. and Mattoo, A.K., Eds., Enfield, CT: Science, 2007, pp. 1–27.

  23. Galpaz, N., Ronen, G., Khalfa, Z., et al., A chromoplast-specific carotenoid biosynthesis pathway is revealed by cloning of the tomato white flower locus, Plant Cell, 2006, vol. 18, pp. 1947–1960.

    Article  CAS  Google Scholar 

  24. Carrizo García, C., Barfuss, M.H., Sehr, E.M., et al., Phylogenetic relationships, diversification and expansion of chili peppers (Capsicum, Solanaceae), Ann. Bot., 2016, vol. 118, no. 1, pp. 35—51. https://doi.org/10.1093/aob/mcw079

    Article  PubMed  PubMed Central  Google Scholar 

  25. Barboza, G.E., Carrizo García, C., Leiva González, S., et al., Four new species of Capsicum (Solanaceae) from the tropical Andes and an update on the phylogeny of the genus, PLoS One, 2019, vol. 14, article e0209792. https://doi.org/10.1371/journal.pone.0209792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Berry, H.M., Rickett, D.V., Baxter, C.J., Enfissi, E.M.A., and Fraser, P.D., Carotenoid biosynthesis and sequestration in red chili fruit of the pepper and its impact on color intensity traits, J. Exp. Bot., 2019, vol. 70, pp. 2637–2650. https://doi.org/10.1093/jxb/erz086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Deruère, J., Römer, S., d’Harlingue, A., et al., Fibril assembly and carotenoid overaccumulation in chromoplasts: a model for supramolecular lipoprotein structures, Plant Cell, 1994, vol. 6, pp. 119–133.

    PubMed  PubMed Central  Google Scholar 

  28. Kilcrease, J., Rodriguez-Uribe, L., Richins, R.D., et al., Correlations of carotenoid content and transcript abundances for fibrillin and carotenogenic enzymes in Capsicum annum fruit pericarp, Plant Sci., 2015, vol. 232, pp. 57–66. https://doi.org/10.1016/j.plantsci.2014.12.014

    Article  CAS  PubMed  Google Scholar 

  29. Mohd Hassan, N., Yusof, N.A., Yahaya, A.F., et al., Carotenoids of Capsicum fruits: pigment profile and health-promoting functional attributes, Antioxidants (Basel), 2019, vol. 8, no. 10, article E469. https://doi.org/10.3390/antiox8100469

    Article  CAS  PubMed  Google Scholar 

  30. Fraser, P.D., Truesdale, M.R., Bird, C.R., et al., Carotenoid biosynthesis during tomato fruit development (evidence for tissue-specific gene expression), Plant Physiol., 1994, vol. 105, no. 1, pp. 405–413. https://doi.org/10.1104/pp.105.1.405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lichtenthaler, H.K., Chlorophylls and carotenoids: pigments of photosynthetic biomembranes, Methods Enzymol., 1987, vol. 148, pp. 350–382. https://doi.org/10.1016/0076-6879(87)48036-1

    Article  CAS  Google Scholar 

  32. Solovchenko, A.E., Chivkunova, O.B., Merzlyak, M.N., and Reshetnikova, I.V., A spectrophotometric analysis of pigments in apples, Russ. J. Plant Physiol., 2001, vol. 48, no. 5, pp. 693–700.

    Article  CAS  Google Scholar 

  33. Puchooa, D., A simple, rapid and efficient method for the extraction of genomic DNA from lychee (Litchi chinensis Sonn.), Afr. J. Biotech., 2004, vol. 3, pp. 253–255.

    Article  CAS  Google Scholar 

  34. Filyushin, M.A., Dzhos, E.A., Shchennikova, A.V., and Kochieva, E.Z., dependence of pepper fruit colour on basic pigments ratio and expression pattern of carotenoid and anthocyanin biosynthesis genes, Russ. J. Plant Physiol., 2020, vol. 67, no. 6, pp. 1054–1062. https://doi.org/10.1134/S1021443720050040

    Article  CAS  Google Scholar 

  35. Bemer, M., Karlova, R., Ballester, A.R., et al., The tomato FRUITFULL homologs TDR4/FUL1 and MBP7/FUL2 regulate ethylene-independent aspects of fruit ripening, Plant Cell, 2012, vol. 24, p. 4437. https://doi.org/10.1105/tpc.112.103283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Liu, C.I., Liu, G.Y., Song, Y., et al., A cholesterol biosynthesis inhibitor blocks Staphylococcus aureus virulence, Science, 2008, vol. 319, pp. 1391–1394.

    Article  CAS  Google Scholar 

  37. Filyushin, M.A., Dzhos, E.A., Shchennikova, A.V., and Kochieva, E.Z., Expression features of the transcription factor gene anthocyanin2 and its effect on the anthocyanin content in Capsicum chinense Jacq. cultivars with different fruit coloration, Russ J Genet., 2020, vol. 56, no. 10, pp. 1161–1170. https://doi.org/10.1134/S1022795420090069

    Article  Google Scholar 

  38. Jeong, H.B., Kang, M.Y., Jung, A., et al., Single-molecule real-time sequencing reveals diverse allelic variations in carotenoid biosynthetic genes in pepper (Capsicum spp.), Plant Biotechnol. J., 2019, vol. 17, no. 6, pp. 1081–1093. https://doi.org/10.1111/pbi.13039

    Article  CAS  PubMed  Google Scholar 

  39. Jang, S.J., Jeong, H.B., Jung, A., et al., Phytoene synthase 2 can compensate for the absence of Psy1 in Capsicum fruit, J. Exp. Bot., 2020, article eraa155. https://doi.org/10.1093/jxb/eraa155

  40. Liu, Y., Lv, J., Liu, Z., et al., Integrative analysis of metabolome and transcriptome reveals the mechanism of color formation in pepper fruit (Capsicum annuum L.), Food Chem., 2020, vol. 306, article 125629. https://doi.org/10.1016/j.foodchem.2019.125629

    Article  CAS  PubMed  Google Scholar 

  41. Fray, R.G. and Grierson, D., Identification and genetic analysis of normal and mutant phytoene synthase genes of tomato by sequencing, complementation and co-suppression, Plant Mol. Biol., 1993, vol. 22, pp. 589–602.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 19-16-00016, and used Experimental climate control facility (Federal Research Center Fundamentals of Biotechnology of the Russian Academy of Sciences).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Filyushin.

Ethics declarations

The authors declare they have no conflicts of interest.

The studies were performed without the use of animals and without the involvement of human subjects.

Additional information

Translated by A.A. Lisenkova

APPENDIX

APPENDIX

Fig. S1.
figure 7

Amino acid sequences of PSY1 of the analyzed pepper cultivars and cv. Zunla-1 (C. annuum; NP_013111896.1).

Fig. S2.
figure 8

Amino acid sequences of PSY2 of the analyzed pepper cultivars and cv. Zunla-1 (C. annuum; XP_016560212.1).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filyushin, M.A., Dyachenko, E.A., Efremov, G.I. et al. Variability and Expression Pattern of Phytoene Synthase (PSY) Paralogs in Pepper Species. Russ J Genet 57, 282–296 (2021). https://doi.org/10.1134/S1022795421020046

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795421020046

Keywords:

Navigation