Abstract
The review discusses the data on the significant role of pregnancy in adaptive evolution of modern humans. In the aspect of evolutionary medicine, the main attention is paid to preeclampsia (PE), a severe hypertensive pathology of pregnancy. The current evolutionary hypotheses about the origin and causes of racial and ethnic variability in the incidence of this pathology in human populations are summarized. Studies that suggest the contribution of adaptive evolution to the formation of a hereditary predisposition to the development of PE are presented. Our results which first showed the significant role of negative selection in the formation of the genetic architecture of PE via the regulatory single nucleotide polymorphisms of new candidate genes for this pathology are demonstrated.
This is a preview of subscription content,
to check access.
REFERENCES
Speakman, J.R., Thrifty genes for obesity and metabolic syndrome time to call off the search?, Diabetes Vasc. Dis. Res., 2006, vol. 3, no. 1, pp. 7—11.
Helgason, A., Palsson, S., Thorleifsson, G., et al., Refining the impact of TCF7L2 gene variants on type 2 diabetes and adaptive evolution, Nat. Genet., 2007, vol. 39, pp. 218—225.
Dudley, J.T., Kim, Y., Liu, L., et al., Human genomic disease variants: a neutral evolutionary explanation, Genome. Res., 2012, vol. 22, no. 8, pp. 1383—1394. https://doi.org/10.1101/gr.133702.111
Qi, L. and Campos, H., Genetic predictors for cardiovascular disease in Hispanics, Trends Cardiovasc. Med., 2011, vol. 21, no. 1, pp. 15—20. https://doi.org/10.1016/j.tcm.2012.01.002
Corbo, R.M., Gambina, G., and Scacchi, R., How contemporary human reproductive behaviors influence the role of fertility-related genes: the example of the p53 gene, PLoS One, 2012, vol. 7, no. 4. e35431. https://doi.org/10.1371/journal.pone. 0035431
Di Rienzo, A. and Hudson, R.R., An evolutionary framework for common diseases: the ancestral susceptibility model, Trends Genet., 2005, vol. 21, no. 11, pp. 596—601.
Elliot, M.G., Oxidative stress and the evolutionary origins of preeclampsia, J. Reprod. Immunol., 2016, vol. 114, pp. 75—80. https://doi.org/10.1016/j.jri.2016.02.003
Kirwan, J.D., Bekaert, M., Commins, J.M., et al., A phylomedicine approach to understanding the evolution of auditory sensory perception and disease in mammals, Evol. Appl., 2013, vol. 6, no. 3, pp. 412—422. https://doi.org/10.1111/eva.12047
Gibson, G., Decanalization and the origin of complex disease, Nat. Rev. Genet., 2009, vol. 10, pp. 134—140. https://doi.org/10.1038/nrg2502
Neel, J.V., Weder, A.B., and Julius, S., Type II diabetes, essential hypertension and obesity as “syndromes of impaired genetic homeostasis”: thrifty genotype hypothesis enters the 21st century, Perspect. Biol. Med., 1998, vol. 42, no. 1, pp. 44—74.
Schmalhausen, I.I., Factors of Evolution: The Theory of Stabilizing Selection, Philadelphia: Blakiston, 1949.
McGrath, J.J., Hannan, A.J., and Gibson, G., Decanalization, brain development and risk of schizophrenia, Transl. Psychiatry, 2011, vol. 1. e14. https://doi.org/10.1038/tp.2011.16
Altukhov, Yu.P., Korochkin, L.I., and Rychkov, Yu.G., Hereditary biochemical diversity in evolution and development, Russ. J. Genet., 1996, vol. 32, no. 11, pp. 1256—1275.
Perlman, R.L., Why disease persists: an evolutionary nosology, Med. Health Care Philos., 2005, vol. 8, no. 3, pp. 343—350.
Schork, N.J., Cardon, L.R., and Xu, X., The future of genetic epidemiology, Trends. Genet., 1998, vol. 14, pp. 266—271.
Tishkoff, S.A., Reed, F.A., Ranciaro, A., et al., Convergent adaptation of human lactase persistence in Africa and Europe, Nat. Genet., 2007, vol. 39, pp. 31—40.
Chakravarty, M.V. and Booth, F.W., Eating, exercise and “thrifty” genotypes: connecting the dots toward an evolutionary understanding of modern chronic diseases, J. Appl. Physiol., 2004, vol. 96, pp. 3—10.
Stepanov, V.A., Evolution of genetic diversity and human diseases, Russ. J. Genet., 2016, vol. 52, no. 7, pp. 746—756. https://doi.org/10.1134/S1022795416070103
Rossier, B.C., Bochud, M., and Devuyst, O., The hypertension pandemic: an evolutionary perspective, Physiology (Bethesda), 2017, vol. 32, no. 2, pp. 112—125. https://doi.org/10.1152/physiol.00026.2016
Dolgova, O. and Lao, O., Evolutionary and medical consequences of archaic introgression into modern human genomes, Genes (Basel), 2018, vol. 9, no. 7, pp. 1—12. https://doi.org/10.3390/genes9070358
Kruzel-Davila, E., Wasser, W.G., and Skorecki, K., APOL1 nephropathy: a population genetics and evolutionary medicine detective story, Semin. Nephrol., 2017, vol. 37, no. 6, pp. 490—507. https://doi.org/10.1016/j.semnephrol.2017.07.002
Scheinfeldt, L.B. and Tishkoff, S.A., Recent human adaptation: genomic approaches, interpretation and insights, Nat. Rev. Genet., 2013, vol. 14, no. 10, pp. 692—702. https://doi.org/10.1038/nrg3604
Vasseur, E. and Quintana-Murci, L., The impact of natural selection on health and disease: uses of the population genetics approach in humans, Evol. Appl., 2013, vol. 6, no. 4, pp. 596—607. https://doi.org/10.1111/eva.12045
Shi, H. and Su, B., Molecular adaptation of modern human populations, Int. J. Evol. Biol., 2011, vol. 2011, article ID 484769. https://doi.org/10.4061/2011/484769
Saeb, A.T. and Al-Naqeb, D., The impact of evolutionary driving forces on human complex diseases: a population genetics approach, Scientifica (Cairo), 2016, vol. 2016, article ID 2079704. https://doi.org/10.1155/2016/2079704
Puzyrev, V.P. and Kucher, A.N., Evolutionary ontogenetic aspects of pathogenetics of chronic human diseases, Russ. J. Genet., 2011, vol. 47, no. 12, pp. 1395—1405.
Neel, J.V., Diabetes mellitus: a “thrifty” genotype rendered detrimental by “progress”?, Am. J. Hum. Genet., 1962, vol. 14, pp. 353—362.
Ayub, Q., Moutsianas, L., Chen, Y., et al., Revisiting the thrifty gene hypothesis via 65 loci associated with susceptibility to type 2 diabetes, Am. J. Hum. Genet., 2014, vol. 94, no. 2, pp. 176—185. https://doi.org/10.1016/j.ajhg.2013.12.010
Myles, S., Lea, R.A., Ohashi, J., et al., Testing the thrifty gene hypothesis: the Gly482Ser variant in PPARGC1A is associated with BMI in Tongans, BMC Med. Genet., 2011, vol. 12, no. 10, pp. 1—7. https://doi.org/10.1186/1471-2350-12-10
Strachan, D.P., Hay fever, hygiene, and household size, BMJ, 1989, vol. 299, no. 6710, pp. 1259–1260.
Okada, H., Kuhn, C., Feillet, H., et al., The ‘hygiene hypothesis’ for autoimmune and allergic diseases: an update, Clin. Exp. Immunol., 2010, vol. 160, no. 1, pp. 1—9. https://doi.org/10.1111/j.1365-2249.2010.04139.x
Sironi, M. and Clerici, M., The hygiene hypothesis: an evolutionary perspective, Microbes Infect., 2010, vol. 12, no. 6, pp. 421—427. https://doi.org/10.1016/j.micinf.2010.02.002
Brown, E.A., Ruvolo, M., and Sabeti, P.C., Many ways to die, one way to arrive: how selection acts through pregnancy, Trends Genet., 2013, vol. 29, no. 10, pp. 585—592. https://doi.org/10.1016/j.tig.2013.03.001
Butte, N.F., Carbohydrate and lipid metabolism in pregnancy: normal compared with gestational diabetes mellitus, Am. J. Clin. Nutr., 2000, vol. 71, pp. 1256S—1261S. https://doi.org/10.1093/ajcn/71.5.1256s
Kaufmann, P., Mayhew, T.M., Charnock Jones, D.S., Aspects of human fetoplacental vasculogenesis and angiogenesis: II. Changes during normal pregnancy, Placenta, 2004, vol. 25, nos. 2—3, pp. 114—126.
Sladek, S.M., Magness, R.R., and Conrad, K.P., Nitric oxide and pregnancy, Am. J. Physiol., 1997, vol. 272, pp. R441—R463.
Hermida, R.C., Ayala, D.E., Mojón, A., et al., Blood pressure patterns in normal pregnancy, gestational hypertension, and preeclampsia, Hypertension, 2000, vol. 36, no. 2, pp. 149—158.
James, A.H., Bushnell, C.D., Jamison, M.G., et al., Incidence and risk factors for stroke in pregnancy and the puerperium, Obstet. Gynecol., 2005, vol. 106, no. 3, pp. 509—516.
Jolly, M.C., Sebire, N.J., Harris, J.P., et al., Risk factors for macrosomia and its clinical consequences: a study of 350 311 pregnancies, Eur. J. Obstet. Gynecol. Reprod. Biol., 2003, vol. 111, no. 1, pp. 9—14.
Robinson, D.P. and Klein, S.L., Pregnancy and pregnancy-associated hormones alter immune responses and disease pathogenesis, Horm. Behav., 2012, vol. 62, no. 3, pp. 263—271. https://doi.org/10.1016/j.yhbeh.2012.02.023
Jablonski, N.G. and Chaplin, G., Colloquium paper: human skin pigmentation as an adaptation to UV radiation, Proc. Natl. Acad. Sci. U.S.A., 2010, vol. 107, pp. 8962—8968. https://doi.org/10.1073/pnas.0914628107
Steindal, A.H., Tam, T.T., Lu, X.Y., et al., 5-Methyltetrahydrofolate is photosensitive in the presence of riboflavin, Photochem. Photobiol. Sci., 2008, vol. 7, no. 7, pp. 814—818. https://doi.org/10.1039/b718907a
Fleming, A. and Copp, A.J., Embryonic folate metabolism and mouse neural tube defects, Science, 1998, vol. 280, no. 5372, pp. 2107—2109.
Holick, M.F., Vitamin D: importance in the prevention of cancers, type 1 diabetes, heart disease, and osteoporosis, Am. J. Clin. Nutr., 2004, vol. 79, no. 3, pp. 362—371.
Norman, A.W., From vitamin D to hormone D: fundamentals of the vitamin D endocrine system essential for good health, Am. J. Clin. Nutr., 2008, vol. 88, no. 2, pp. 491S—499S.
Campino, S., Kwiatkowski, D., and Dessein, A., Mendelian and complex genetics of susceptibility and resistance to parasitic infections, Semin. Immunol., 2006, vol. 18, no. 6, pp. 411—422.
Ingram, C.J., Mulcare, C.A., and Itan, Y., Lactose digestion and the evolutionary genetics of lactase persistence, Hum. Genet., 2009, vol. 124, no. 6, pp. 579—591. https://doi.org/10.1007/s00439-008-0593-6
Pouillot, R., Hoelzer, K., Jackson, K.A., et al., Relative risk of listeriosis in foodborne diseases active surveillance network (FoodNet) sites according to age, pregnancy, and ethnicity, Clin. Infect. Dis., 2012, vol. 54, pp. S405—S410. https://doi.org/10.1093/cid/cis269
Herrera, E., Lipid metabolism in pregnancy and its consequences in the fetus and newborn, Endocrine, 2002, vol. 19, no. 1, pp. 43—55.
Goldin, B.R., Adlercreutz, H., Gorbach, S.L., et al., Estrogen excretion patterns and plasma levels in vegetarian and omnivorous women, N. Engl. J. Med., 1982, vol. 307, no. 25, pp. 1542—1547.
Flaxman, S.M. and Sherman, P.W., Morning sickness: a mechanism for protecting mother and embryo, Q. Rev. Biol., 2000, vol. 75, no. 2, pp. 113—148.
Profet, M., Pregnancy sickness as adaptation: a deterrent to maternal ingestion of teratogens, in The Adapted Mind: Evolutionary Psychology and Generation of Culture, Barkow, J.H., Cosmides, L., and Tooby, J., Eds., New York: Oxford Univ. Press, 1992, pp. 327—365.
Palmer, J. and Palmer, L., Evolutionary Psychology: The Ultimate Origins of Human Behavior, New Jersey, 2001.
Sherman, P.W. and Flaxman, S.M., Nausea and vomiting of pregnancy in an evolutionary perspective, Am. J. Obstet. Gynecol., 2002, vol. 186, no. 5, pp. 190—197.
Lacasse, A., Rey, E., Ferreira, E., et al., Epidemiology of nausea and vomiting of pregnancy: prevalence, severity, determinants, and the importance of race/ethnicity, BMC Pregnancy Childbirth, 2009, vol. 9, no. 6. https://doi.org/10.1186/1471-2393-9-26
Pepper, G.V. and Craig Roberts, S., Rates of nausea and vomiting in pregnancy and dietary characteristics across populations, Proc. Biol. Sci., 2006, vol. 273, no. 1601, pp. 2675—2679.
Little, R.E. and Hook, E.B., Maternal alcohol and tobacco consumption and their association with nausea and vomiting during pregnancy, Acta Obstet. Gynecol. Scand., 1979, vol. 58, no. 1, pp. 15—17.
Tanaka, T., The San, Hunter-Gatherers of the Kalahari, Univ. Tokyo Press, 1980.
Hoyt, G., Hickey, M.S., and Cordain, L., Dissociation of the glycaemic and insulinaemic responses to whole and skimmed milk, Br. J. Nutr., 2005, vol. 93, no. 2, pp. 175—177.
Zhang, C. and Ning, Y., Effect of dietary and lifestyle factors on the risk of gestational diabetes: review of epidemiologic evidence, Am. J. Clin. Nutr., 2011, vol. 94, no. 6, pp. 1975S—1979S. https://doi.org/10.3945/ajcn.110.001032
Savitz, D.A., Janevic, T.M., Engel, S.M., et al., Ethnicity and gestational diabetes in New York city, 1995—2003, BJOG, 2008, vol. 115, no. 8, pp. 969—978. https://doi.org/10.1111/j.1471-0528.2008.01763.x
Atkinson, F.S., Foster-Powell, K., and Brand-Miller, J.C., International tables of glycemic index and glycemic load values: 2008, Diabetes Care, 2008, vol. 31, no. 12, pp. 2281—2283. https://doi.org/10.2337/dc08-1239
Itan, Y., Jones, B.L., Ingram, C.J., et al., A worldwide correlation of lactase persistence phenotype and genotypes, BMC. Evol. Biol., 2010, vol. 10, pp. 36—47. https://doi.org/10.1186/1471-2148-10-36
Ströhle, A. and Hahn, A., Diets of modern hunter-gatherers vary substantially in their carbohydrate content depending on ecoenvironments: results from an ethnographic analysis, Nutr. Res., 2011, vol. 31, no. 6, pp. 429—435. https://doi.org/10.1016/j.nutres.2011.05.003
Langer, O., Yogev, Y., Most, O., et al., Gestational diabetes: the consequences of not treating, Am. J. Obstet. Gynecol., 2005, vol. 192, no. 4, pp. 989—997.
Dickinson, S., Colagiuri, S., Faramus, E., et al., Postprandial hyperglycemia and insulin sensitivity differ among lean young adults of different ethnicities, J. Nutr., 2002, vol. 132, no. 9, pp. 2574—2579.
Henry, C.J., Lightowler, H.J., Newens, K., et al., Glycaemic index of common foods tested in the UK and India, Br. J. Nutr., 2008, vol. 99, no. 4, pp. 840—845.
Robillard, P.Y., Dekker, G., Chaouat, G., et al., Historical evolution of ideas on eclampsia/preeclampsia: a proposed optimistic view of preeclampsia, J. Reprod. Immunol., 2017, vol. 123, pp. 72—77. https://doi.org/10.1016/j.jri.2017.09.006
Boeldt, D.S. and Bird, I.M., Vascular adaptation in pregnancy and endothelial dysfunction in preeclampsia, J. Endocrinol., 2017, vol. 232, no. 1, pp. R27—R44.
Gathiram, P. and Moodley, J., Pre-eclampsia: its pathogenesis and pathophysiology, Cardiovasc. J. Afr., 2016, vol. 27, no. 2, pp. 71—78. https://doi.org/10.5830/CVJA-2016-009
Tannetta, D. and Sargent, I., Placental disease and the maternal syndrome of preeclampsia: missing links?, Curr. Hypertens. Rep., 2013, vol. 15, no. 6, pp. 590—599. https://doi.org/10.1007/s11906-013-0395-7
Ridder, A., Giorgione, V., Khalil, A., et al., Preeclampsia: the relationship between uterine artery blood flow and trophoblast function, Int. J. Mol. Sci., 2019, vol. 20, no. 13, pp. 1—14. https://doi.org/10.3390/ijms20133263
Adamyan, L.V., Artymuk, N.V., Bashmakova, N.V., et al., Gipertenzivnye rasstroistva vo vremya beremennosti, v rodakh i poslerodovom periode: preeklampsiya. Eklampsiya. Klinicheskie rekomendatsii (Hypertensive Disorders during Pregnancy, Childbirth and the Postpartum Period: Preeclampsia. Eclampsia. Clinical Recommendations), Moscow, 2016.
Burton, G.J., Redman, C.W., Roberts, J.M., et al., Pre-eclampsia: pathophysiology and clinical implications, BMJ, 2019, vol. 366, no. l2381, pp. 1—15. https://doi.org/10.1136/bmj.l2381
Robillard, P.Y., Dekker, G., Chaouat, G., et al., High incidence of early onset preeclampsia is probably the rule and not the exception worldwide: 20th anniversary of the reunion workshop. A summary, J. Reprod. Immunol., 2019, vol. 133, pp. 30—36. https://doi.org/10.1016/j.jri.2019.05.003
Turco, M.Y. and Moffett, A., Development of the human placenta, Development, 2019, vol. 146, no. 22, pp. 1—14. https://doi.org/10.1242/dev.163428
Buurma, A.J., Turner, R.J., Drissen, J.H., et al., Genetic variants in pre-eclampsia: a meta-analysis, Hum. Reprod. Update, 2013, vol. 19, no. 3, pp. 289—303. https://doi.org/10.1093/humupd/dms060
Staines-Urias, E., Paez, M.C., Doyle, P., et al., Genetic association studies in pre-eclampsia: systematic meta-analyses and field synopsis, Int. J. Epidemiol., 2012, vol. 41, no. 6, pp. 1764—1775. https://doi.org/10.1093/ije/dys162
Yang, W., Zhu, Z., Wang, J., et al., Evaluation of association of maternal IL-10 polymorphisms with risk of preeclampsia by A meta-analysis, J. Cell. Mol. Med., 2014, vol. 18, no. 12, pp. 2466—2477. https://doi.org/10.1111/jcmm.12434
Zhang, G., Zhao, J., Yi, J., et al., Association between gene polymorphisms on chromosome 1 and susceptibility to pre-eclampsia: an updated meta-analysis, Med. Sci. Monit., 2016, vol. 22, pp. 2202—2214.
Zhou, L., Cheng, L., He, Y., et al., Association of gene polymorphisms of FV, FII, MTHFR, SERPINE1, CTLA4, IL10, and TNFalpha with pre-eclampsia in Chinese women, Inflamm. Res., 2016, vol. 65, no. 9, pp. 717—724. https://doi.org/10.1007/s00011-016-0953-y
Johnson, M.P., Brennecke, S.P., East, C.E., et al., Genome-wide association scan identifies a risk locus for preeclampsia on 2q14, near the inhibin, beta B gene, PLoS One, 2012, vol. 7, no. 3. e33666. https://doi.org/10.1371/journal.pone.0033666
Williams, P.J. and Pipkin, F.B., The genetics of pre-eclampsia and other hypertensive disorders of pregnancy, Best. Pract. Res. Clin. Obstet. Gynaecol., 2011, vol. 25, no. 4, pp. 405—417. https://doi.org/10.1016/j.bpobgyn.2011.02.007
Zhao, L., Bracken, M.B., and DeWan, A.T., Genome-wide association study of pre-eclampsia detects novel maternal single nucleotide polymorphisms and copy-number variants in subsets of the Hyperglycemia and Adverse Pregnancy Outcome (HAPO) study cohort, Ann. Hum. Genet., 2013, vol. 77, no. 4, pp. 277—287. https://doi.org/10.1111/ahg.12021
Haig, D., Genetic conflicts in human pregnancy, Q. Rev. Biol., 1993, vol. 68, no. 4, pp. 495—532.
Pijnenborg, R., Vercruysse, L., and Hanssens, M., Fetal-maternal conflict, trophoblast invasion, preeclampsia, and the red queen, Hypertens. Pregnancy, 2008, vol. 27, no. 2, pp. 183—196. https://doi.org/10.1080/10641950701826711
Gong, J., Savitz, D., Stein, C., et al., Maternal ethnicity and preeclampsia in New York city, 1995—2003, Paediatr. Perinat. Epidemiol., 2012, vol. 26, no. 1, pp. 45—52. https://doi.org/10.1111/j.1365-3016.2011.01222.x
Nakimuli, A., Chazara, O., Byamugisha, J., et al., Pregnancy, parturition and preeclampsia in women of African ancestry, Am. J. Obstet. Gynecol., 2014, vol. 210, no. 6, pp. 510—520. https://doi.org/10.1016/j.ajog.2013.10.879
Goffinet, F., Epidemiology, Ann. Fr. Anesth. Reanim., 2010, vol. 29, no. 3, pp. e7—e12. https://doi.org/10.1016/j.annfar.2010.02.010
Steegers, E.A., von Dadelszen, P., Duvekot, J.J., et al., Pre-eclampsia, Lancet, 2010, vol. 376, no. 9741, pp. 631—644. https://doi.org/10.1016/S0140-6736(10)60279-6
Xiao, J., Shen, F., Xue, Q., et al., Is ethnicity a risk factor for developing preeclampsia? An analysis of the prevalence of preeclampsia in China, J. Hum. Hypertens., 2014, vol. 28, no. 11, pp. 694—698. https://doi.org/10.1038/jhh.2013.148
Reyes, L., Garcia, R., Ruiz, S., et al., Nutritional status among women with pre-eclampsia and healthy pregnant and non-pregnant women in a Latin American country, J. Obstet. Gynaecol. Res., 2012, vol. 38, no. 3, pp. 498—504. https://doi.org/10.1111/j.1447-0756.2011.01763.x
Mol, B.W.J., Roberts, C.T., Thangaratinam, S., et al., Pre-eclampsia, Lancet, 2016, vol. 387, no. 10022, pp. 999—1011. https://doi.org/10.1016/S0140-6736(15)00070-7
Brown, I.J., Tzoulaki, I., Candeias, V., et al., Salt intakes around the world: implications for public health, Int. J. Epidemiol., 2009, vol. 38, no. 3, pp. 791—813. https://doi.org/10.1093/ije/dyp139
Wilson, M.J., Lopez, M., Vargas, M., et al., Greater uterine artery blood flow during pregnancy in multigenerational (Andean) than shorter-term (European) high-altitude residents, Am. J. Physiol. Regul. Integr. Comp. Physiol., 2007, vol. 293, no. 3, pp. R1313—R1324.
Ahmed, S.I.Y., Ibrahim, M.E., and Khalil, E.A.G., High altitude and pre-eclampsia: adaptation or protection, Med. Hypotheses, 2017, vol. 104, pp. 128—132. https://doi.org/10.1016/j.mehy.2017.05.007
Handa, V.L., Lockhart, M.E., Fielding, J.R., et al., Racial differences in pelvic anatomy by magnetic resonance imaging, Obstet. Gynecol., 2008, vol. 111, no. 4, pp. 914—920. https://doi.org/10.1097/AOG.0b013e318169ce03
Agius, A., Sultana, R., Camenzuli, C., et al., An update on the genetics of pre-eclampsia, Minerva Ginecol., 2017, vol. 70, no. 4, pp. 465—479. https://doi.org/10.23736/S0026-4784.17.04150-8
Robillard, P.Y., Hulsey, T.C., Dekker, G.A., et al., Preeclampsia and human reproduction: an essay of a long term reflection, J. Reprod. Immunol., 2003, vol. 59, no. 2, pp. 93—100.
Baird, J., Eclampsia in a lowland gorilla, Am. J. Obstet. Gynecol., 1981, vol. 141, no. 3, pp. 345—346.
Thornton, J.G. and Onwude, J.L., Convulsions in pregnancy in related gorillas, Am. J. Obstet. Gynecol., 1992, vol. 167, no. 1, pp. 240—241.
Stout, C. and Lemmon, W.B., Glomerular capillary endothelial swelling in a pregnant chimpanzee, Am. J. Obstet. Gynecol., 1969, vol. 105, no. 2, pp. 212—215.
Krugner-Higby, L., Luck, M., Hartley, D., et al., High-risk pregnancy in rhesus monkeys (Macaca mulatta): a case of ectopic, abdominal pregnancy with birth of a live, term infant, and a case of gestational diabetes complicated by pre-eclampsia, J. Med. Primatol., 2009, vol. 38, no. 4, pp. 252—256. https://doi.org/10.1111/j.1600-0684.2009.00349.x
Abrams, E.T. and Rutherford, J.N., Framing postpartum hemorrhage as a consequence of human placental biology: an evolutionary and comparative perspective, Am. Anthropol., 2011, vol. 113, no. 3, pp. 417—430. https://doi.org/10.1111/j.1548-1433.2011.01351.x
Crosley, E.J., Elliot, M.G., Christians, J.K., et al., Placental invasion, preeclampsia risk and adaptive molecular evolution at the origin of the great apes: evidence from genome-wide analyses, Placenta, 2013, vol. 34, no. 2, pp. 127—132. https://doi.org/10.1016/j.placenta.2012.12.001
Elliot, M.G. and Crespi, B.J., Genetic recapitulation of human pre-eclampsia risk during convergent evolution of reduced placental invasiveness in eutherian mammals, Philos. Trans. R. Soc., B, 2015, vol. 370, no. 1663, p. 20140069. https://doi.org/10.1098/rstb.2014.0069
Vogel, P., The current molecular phylogeny of eutherian mammals challenges previous interpretations of placental evolution, Placenta, 2005, vol. 26, nos. 8—9, pp. 591—596.
Carter, A.M. and Enders, A.C., Comparative aspects of trophoblast development and placentation, Reprod. Biol. Endocrinol., 2004, vol. 2, no. 46, pp. 1—15.
Elliot, M. and Crespi, B., Phylogenetic evidence for early hemochorial placentation in eutheria, Placenta, 2009, vol. 30, no. 11, pp. 949—967. https://doi.org/10.1016/j.placenta.2009.08.004
Mess, A. and Carter, A.M., Evolutionary transformations of fetal membrane characters in Eutheria with special reference to Afrotheria, J. Exp. Zool., Part B, 2006, vol. 306, no. 2, pp. 140—163.
Cole, L.A., Khanlian, S.A., and Kohorn, E.I., Evolution of the human brain, chorionic gonadotropin and hemochorial implantation of the placenta: insights into origins of pregnancy failures, preeclampsia and choriocarcinoma, J. Reprod. Med., 2008, vol. 53, no. 8, pp. 549—557.
Eisenberg, J.F., The Mammalian Radiations: An Analysis of Trends in Evolution, Adaptation and Behavior, Chicago: Univ. Chicago Press, 1983.
Chaline, J., Increased cranial capacity in hominid evolution and preeclampsia, J. Reprod. Immunol., 2003, vol. 59, no. 2, pp. 137—152.
Robillard, P.Y., Dekker, G.A., and Hulsey, T.C., Evolutionary adaptations to pre-eclampsia/eclampsia in humans: low fecundability rate, loss of oestrus, prohibitions of incest and systematic polyandry, Am. J. Reprod. Immunol., 2002, vol. 47, no. 2, pp. 104—111.
Capellini, I., Venditti, C., and Barton, R., Placentation and maternal investment in mammals, Am. Nat., 2011, vol. 177, no. 1, pp. 86—98. https://doi.org/10.1086/657435
Carter, A.M. and Pijnenborg, R., Evolution of invasive placentation with special reference to non-human primates., Best. Pract. Res. Clin. Obstet. Gynaecol., 2011, vol. 25, no. 3, pp. 249—257. https://doi.org/10.1016/j.bpobgyn.2010.10.010
Elliot, M. and Crespi, B., Placental invasiveness and brain-body allometry in eutherian mammals, J. Evol. Biol., 2008, vol. 21, no. 6, pp. 1763—1778. https://doi.org/10.1111/j.1420-9101.2008.01590.x
Martin, R.D., The evolution of human reproduction: a primatological perspective, Am. J. Phys. Anthropol., 2007, vol. 134, no. 45, pp. 59—84.
Dunsworth, H.M., Warrener, A.G., Deacon, T., et al., Metabolic hypothesis for human altriciality, Proc. Natl. Acad. Sci. U.S.A., 2012, vol. 109, no. 38, pp. 15212—15216.
Pawlwski, B., Why are human newborns so big and fat?, Hum. Evol., 1998, vol. 13, no. 1, pp. 65—72.
Cunnane, S.C. and Crawford, M.A., Survival of the fattest: fat babies were the key to evolution of the large human brain, Comp. Biochem. Physiol., Part A: Mol. Integr. Physiol., 2003, vol. 136, no. 1, pp. 17—26.
Than, N.G., Romero, R., Xu, Y., et al., Evolutionary origins of the placental expression of chromosome 19 cluster galectins and their complex dysregulation in preeclampsia, Placenta, 2014, vol. 35, no. 11, pp. 855—865. https://doi.org/10.1016/j.placenta.2014.07.015
Zadora, J., Singh, M., Herse, F., et al., Disturbed placental imprinting in preeclampsia leads to altered expression of DLX5, a human-specific early trophoblast marker, Circulation, 2017, vol. 136, no. 19, pp. 1824—1839. https://doi.org/10.1161/CIRCULATIONAHA.117.028110
Kaartokallio, T., Wang, J., Heinonen, S., et al., Exome sequencing in pooled DNA samples to identify maternal pre-eclampsia risk variants, Sci. Rep., 2016, vol. 6, pp. 1—9. https://doi.org/10.1038/srep29085
Serebrova, V.N., Evolutionary genetic analysis of the role of regulatory genomic regions in the formation of hereditary predisposition to preeclampsia, Cand. Sci. (Med.) Dissertation, Tomsk, 2018.
Serebrova, V.N., Trifonova, E.A., and Stepanov, V.A., Evolutionary genetic analysis of the role of regulatory regions in NDRG1 gene in the formation of the hereditary predisposition to preeclampsia in different ethnic groups. Med. Genet., 2018, vol. 17, no. 1(187), pp. 32—36. https://doi.org/10.25557/2073-7998.2018.01.32-36
Serebrova, V.N., Trifonova, E.A., and Stepanov, V.A., Evolutionary genetic analysis of the role of regulatory regions in CORO2A gene in the development of hereditary predisposition to preeclampsia in Russian and Yakut ethnic groups, Nauch. Rezul’t. Biomed. Issled., 2018, vol. 4, no. 3, pp. 38—48. https://doi.org/10.18413/2313-8955-2018-4-3-0-4
Trifonova, E.A., Gabidulina, T.V., Ershov, N.I., et al., Analysis of the placental tissue transcriptome of normal and preeclampsia complicated pregnancies, Acta Nat., 2014, vol. 6, no. 2(21), pp. 77—90.
Nishizawa, H., Ota, S., Suzuki, M., et al., Comparative gene expression profiling of placentas from patients with severe pre-eclampsia and unexplained fetal growth restriction, Reprod. Biol. Endocrinol., 2011, vol. 9, p. 107. https://doi.org/10.1186/1477-7827-9-107
Sitras, V., Paulssen, R.H., Gronaas, H., et al., Differential placental gene expression in severe preeclampsia, Placenta, 2009, vol. 30, no. 5, pp. 424—433. https://doi.org/10.1016/j.placenta.2009.01.012
Loset, M., Mundal, S.B., Johnson, M.P., et al., A transcriptional profile of the decidua in preeclampsia, Am. J. Obstet. Gynecol., 2011, vol. 204, no. 1, pp. 1—27. https://doi.org/10.1016/j.ajog.2010.08.043
Meng, T., Chen, H., Sun, M., et al., Identification of differential gene expression profiles in placentas from preeclamptic pregnancies versus normal pregnancies by DNA microarrays, OMICS, 2012, vol. 16, no. 6, pp. 301—311. https://doi.org/10.1089/omi.2011.0066
Chen, B., Nelson, D.M., and Sadovsky, Y., N-Myc downregulated gene 1 (Ndrg1) modulates the response of term human trophoblasts to hypoxic injury, J. Biol. Chem., 2006, vol. 281, no. 5, pp. 2764—2772.
Louwen, F., Muschol-Steinmetz, C., Reinhard, J., et al., A lesson for cancer research: placental microarray gene analysis in preeclampsia, Oncotarget, 2012, vol. 3, no. 8, pp. 759—773.
Huang, W., Ghisletti, S., Saijo, K., et al., Coronin 2A mediates actin-dependent de-repression of inflammatory response genes, Nature, 2011, vol. 470, no. 7334, pp. 414—418. https://doi.org/10.1038/nature09703
Zhuang, B., Luo, X., Rao, H., et al., Oxidative stress-induced C/EBPβ inhibits β-catenin signaling molecule involving in the pathology of preeclampsia, Placenta, 2015, vol. 36, no. 8, pp. 839—846. https://doi.org/10.1016/j.placenta.2015.06.016
Tinel, M., Berson, A., Elkahwaji, J., et al., Downregulation of cytochromes P450 in growth-stimulated rat hepatocytes: role of c-Myc induction and impaired C/EBP binding to DNA, J. Hepatol., 2003, vol. 39, no. 2, pp. 171—178.
Gathiram, P. and Moodley, J., Pre-eclampsia: its pathogenesis and pathophysiology, Cardiovasc. J. Afr., 2016, vol. 27, no. 2, pp. 71—78. https://doi.org/10.5830/CVJA-2016-009
Henn, B.M., Cavalli-Sforza, L.L., and Feldman, M.W., The great human expansion, Proc. Natl. Acad. Sci. U.S.A., 2012, vol. 109, no. 44, pp. 17758—17764. https://doi.org/10.1073/pnas.1212380109
Wells, J.C.K., Nesse, R.M., Sear, R., et al., Evolutionary public health: introducing the concept, Lancet, 2017, vol. 390, no. 10093, pp. 500—509. https://doi.org/10.1016/S0140-6736(17)30572-X
Funding
This work was financially supported by the Russian Foundation for Basic Research (project no. 18-29-13045).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest. The authors declare that they have no conflict of interest.
Statement of compliance with standards of research involving humans as subjects. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants involved in the study.
Additional information
Translated by D. Novikova
Rights and permissions
About this article
Cite this article
Serebrova, V.N., Trifonova, E.A. & Stepanov, V.A. Pregnancy as a Factor of Adaptive Human Evolution. The Role of Natural Selection in the Origin of Preeclampsia. Russ J Genet 57, 23–35 (2021). https://doi.org/10.1134/S1022795421010142
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S1022795421010142