Skip to main content

Pregnancy as a Factor of Adaptive Human Evolution. The Role of Natural Selection in the Origin of Preeclampsia

Abstract

The review discusses the data on the significant role of pregnancy in adaptive evolution of modern humans. In the aspect of evolutionary medicine, the main attention is paid to preeclampsia (PE), a severe hypertensive pathology of pregnancy. The current evolutionary hypotheses about the origin and causes of racial and ethnic variability in the incidence of this pathology in human populations are summarized. Studies that suggest the contribution of adaptive evolution to the formation of a hereditary predisposition to the development of PE are presented. Our results which first showed the significant role of negative selection in the formation of the genetic architecture of PE via the regulatory single nucleotide polymorphisms of new candidate genes for this pathology are demonstrated.

This is a preview of subscription content, access via your institution.

Fig. 1.

REFERENCES

  1. Speakman, J.R., Thrifty genes for obesity and metabolic syndrome time to call off the search?, Diabetes Vasc. Dis. Res., 2006, vol. 3, no. 1, pp. 7—11.

    Article  Google Scholar 

  2. Helgason, A., Palsson, S., Thorleifsson, G., et al., Refining the impact of TCF7L2 gene variants on type 2 diabetes and adaptive evolution, Nat. Genet., 2007, vol. 39, pp. 218—225.

    PubMed  Article  CAS  Google Scholar 

  3. Dudley, J.T., Kim, Y., Liu, L., et al., Human genomic disease variants: a neutral evolutionary explanation, Genome. Res., 2012, vol. 22, no. 8, pp. 1383—1394. https://doi.org/10.1101/gr.133702.111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Qi, L. and Campos, H., Genetic predictors for cardiovascular disease in Hispanics, Trends Cardiovasc. Med., 2011, vol. 21, no. 1, pp. 15—20. https://doi.org/10.1016/j.tcm.2012.01.002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Corbo, R.M., Gambina, G., and Scacchi, R., How contemporary human reproductive behaviors influence the role of fertility-related genes: the example of the p53 gene, PLoS One, 2012, vol. 7, no. 4. e35431. https://doi.org/10.1371/journal.pone. 0035431

  6. Di Rienzo, A. and Hudson, R.R., An evolutionary framework for common diseases: the ancestral susceptibility model, Trends Genet., 2005, vol. 21, no. 11, pp. 596—601.

    PubMed  Article  CAS  Google Scholar 

  7. Elliot, M.G., Oxidative stress and the evolutionary origins of preeclampsia, J. Reprod. Immunol., 2016, vol. 114, pp. 75—80. https://doi.org/10.1016/j.jri.2016.02.003

    Article  PubMed  CAS  Google Scholar 

  8. Kirwan, J.D., Bekaert, M., Commins, J.M., et al., A phylomedicine approach to understanding the evolution of auditory sensory perception and disease in mammals, Evol. Appl., 2013, vol. 6, no. 3, pp. 412—422. https://doi.org/10.1111/eva.12047

    Article  PubMed  PubMed Central  Google Scholar 

  9. Gibson, G., Decanalization and the origin of complex disease, Nat. Rev. Genet., 2009, vol. 10, pp. 134—140. https://doi.org/10.1038/nrg2502

    Article  PubMed  CAS  Google Scholar 

  10. Neel, J.V., Weder, A.B., and Julius, S., Type II diabetes, essential hypertension and obesity as “syndromes of impaired genetic homeostasis”: thrifty genotype hypothesis enters the 21st century, Perspect. Biol. Med., 1998, vol. 42, no. 1, pp. 44—74.

    PubMed  Article  CAS  Google Scholar 

  11. Schmalhausen, I.I., Factors of Evolution: The Theory of Stabilizing Selection, Philadelphia: Blakiston, 1949.

    Google Scholar 

  12. McGrath, J.J., Hannan, A.J., and Gibson, G., Decanalization, brain development and risk of schizophrenia, Transl. Psychiatry, 2011, vol. 1. e14. https://doi.org/10.1038/tp.2011.16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Altukhov, Yu.P., Korochkin, L.I., and Rychkov, Yu.G., Hereditary biochemical diversity in evolution and development, Russ. J. Genet., 1996, vol. 32, no. 11, pp. 1256—1275.

    CAS  Google Scholar 

  14. Perlman, R.L., Why disease persists: an evolutionary nosology, Med. Health Care Philos., 2005, vol. 8, no. 3, pp. 343—350.

    PubMed  Article  Google Scholar 

  15. Schork, N.J., Cardon, L.R., and Xu, X., The future of genetic epidemiology, Trends. Genet., 1998, vol. 14, pp. 266—271.

    PubMed  Article  CAS  Google Scholar 

  16. Tishkoff, S.A., Reed, F.A., Ranciaro, A., et al., Convergent adaptation of human lactase persistence in Africa and Europe, Nat. Genet., 2007, vol. 39, pp. 31—40.

    PubMed  Article  CAS  Google Scholar 

  17. Chakravarty, M.V. and Booth, F.W., Eating, exercise and “thrifty” genotypes: connecting the dots toward an evolutionary understanding of modern chronic diseases, J. Appl. Physiol., 2004, vol. 96, pp. 3—10.

    Article  Google Scholar 

  18. Stepanov, V.A., Evolution of genetic diversity and human diseases, Russ. J. Genet., 2016, vol. 52, no. 7, pp. 746—756. https://doi.org/10.1134/S1022795416070103

    Article  CAS  Google Scholar 

  19. Rossier, B.C., Bochud, M., and Devuyst, O., The hypertension pandemic: an evolutionary perspective, Physiology (Bethesda), 2017, vol. 32, no. 2, pp. 112—125. https://doi.org/10.1152/physiol.00026.2016

    Article  PubMed  CAS  Google Scholar 

  20. Dolgova, O. and Lao, O., Evolutionary and medical consequences of archaic introgression into modern human genomes, Genes (Basel), 2018, vol. 9, no. 7, pp. 1—12. https://doi.org/10.3390/genes9070358

    Article  CAS  Google Scholar 

  21. Kruzel-Davila, E., Wasser, W.G., and Skorecki, K., APOL1 nephropathy: a population genetics and evolutionary medicine detective story, Semin. Nephrol., 2017, vol. 37, no. 6, pp. 490—507. https://doi.org/10.1016/j.semnephrol.2017.07.002

    Article  PubMed  CAS  Google Scholar 

  22. Scheinfeldt, L.B. and Tishkoff, S.A., Recent human adaptation: genomic approaches, interpretation and insights, Nat. Rev. Genet., 2013, vol. 14, no. 10, pp. 692—702. https://doi.org/10.1038/nrg3604

    Article  PubMed  PubMed Central  Google Scholar 

  23. Vasseur, E. and Quintana-Murci, L., The impact of natural selection on health and disease: uses of the population genetics approach in humans, Evol. Appl., 2013, vol. 6, no. 4, pp. 596—607. https://doi.org/10.1111/eva.12045

    Article  PubMed  PubMed Central  Google Scholar 

  24. Shi, H. and Su, B., Molecular adaptation of modern human populations, Int. J. Evol. Biol., 2011, vol. 2011, article ID 484769. https://doi.org/10.4061/2011/484769

    Article  Google Scholar 

  25. Saeb, A.T. and Al-Naqeb, D., The impact of evolutionary driving forces on human complex diseases: a population genetics approach, Scientifica (Cairo), 2016, vol. 2016, article ID 2079704. https://doi.org/10.1155/2016/2079704

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Puzyrev, V.P. and Kucher, A.N., Evolutionary ontogenetic aspects of pathogenetics of chronic human diseases, Russ. J. Genet., 2011, vol. 47, no. 12, pp. 1395—1405.

    Article  CAS  Google Scholar 

  27. Neel, J.V., Diabetes mellitus: a “thrifty” genotype rendered detrimental by “progress”?, Am. J. Hum. Genet., 1962, vol. 14, pp. 353—362.

    PubMed  PubMed Central  CAS  Google Scholar 

  28. Ayub, Q., Moutsianas, L., Chen, Y., et al., Revisiting the thrifty gene hypothesis via 65 loci associated with susceptibility to type 2 diabetes, Am. J. Hum. Genet., 2014, vol. 94, no. 2, pp. 176—185. https://doi.org/10.1016/j.ajhg.2013.12.010

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Myles, S., Lea, R.A., Ohashi, J., et al., Testing the thrifty gene hypothesis: the Gly482Ser variant in PPARGC1A is associated with BMI in Tongans, BMC Med. Genet., 2011, vol. 12, no. 10, pp. 1—7. https://doi.org/10.1186/1471-2350-12-10

    Article  CAS  Google Scholar 

  30. Strachan, D.P., Hay fever, hygiene, and household size, BMJ, 1989, vol. 299, no. 6710, pp. 1259–1260.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  31. Okada, H., Kuhn, C., Feillet, H., et al., The ‘hygiene hypothesis’ for autoimmune and allergic diseases: an update, Clin. Exp. Immunol., 2010, vol. 160, no. 1, pp. 1—9. https://doi.org/10.1111/j.1365-2249.2010.04139.x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Sironi, M. and Clerici, M., The hygiene hypothesis: an evolutionary perspective, Microbes Infect., 2010, vol. 12, no. 6, pp. 421—427. https://doi.org/10.1016/j.micinf.2010.02.002

    Article  PubMed  Google Scholar 

  33. Brown, E.A., Ruvolo, M., and Sabeti, P.C., Many ways to die, one way to arrive: how selection acts through pregnancy, Trends Genet., 2013, vol. 29, no. 10, pp. 585—592. https://doi.org/10.1016/j.tig.2013.03.001

    Article  PubMed  CAS  Google Scholar 

  34. Butte, N.F., Carbohydrate and lipid metabolism in pregnancy: normal compared with gestational diabetes mellitus, Am. J. Clin. Nutr., 2000, vol. 71, pp. 1256S—1261S. https://doi.org/10.1093/ajcn/71.5.1256s

    Article  PubMed  CAS  Google Scholar 

  35. Kaufmann, P., Mayhew, T.M., Charnock Jones, D.S., Aspects of human fetoplacental vasculogenesis and angiogenesis: II. Changes during normal pregnancy, Placenta, 2004, vol. 25, nos. 2—3, pp. 114—126.

    PubMed  Article  CAS  Google Scholar 

  36. Sladek, S.M., Magness, R.R., and Conrad, K.P., Nitric oxide and pregnancy, Am. J. Physiol., 1997, vol. 272, pp. R441—R463.

    PubMed  CAS  Google Scholar 

  37. Hermida, R.C., Ayala, D.E., Mojón, A., et al., Blood pressure patterns in normal pregnancy, gestational hypertension, and preeclampsia, Hypertension, 2000, vol. 36, no. 2, pp. 149—158.

    PubMed  Article  CAS  Google Scholar 

  38. James, A.H., Bushnell, C.D., Jamison, M.G., et al., Incidence and risk factors for stroke in pregnancy and the puerperium, Obstet. Gynecol., 2005, vol. 106, no. 3, pp. 509—516.

    PubMed  Article  Google Scholar 

  39. Jolly, M.C., Sebire, N.J., Harris, J.P., et al., Risk factors for macrosomia and its clinical consequences: a study of 350 311 pregnancies, Eur. J. Obstet. Gynecol. Reprod. Biol., 2003, vol. 111, no. 1, pp. 9—14.

    PubMed  Article  Google Scholar 

  40. Robinson, D.P. and Klein, S.L., Pregnancy and pregnancy-associated hormones alter immune responses and disease pathogenesis, Horm. Behav., 2012, vol. 62, no. 3, pp. 263—271. https://doi.org/10.1016/j.yhbeh.2012.02.023

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Jablonski, N.G. and Chaplin, G., Colloquium paper: human skin pigmentation as an adaptation to UV radiation, Proc. Natl. Acad. Sci. U.S.A., 2010, vol. 107, pp. 8962—8968. https://doi.org/10.1073/pnas.0914628107

    Article  PubMed  PubMed Central  Google Scholar 

  42. Steindal, A.H., Tam, T.T., Lu, X.Y., et al., 5-Methyltetrahydrofolate is photosensitive in the presence of riboflavin, Photochem. Photobiol. Sci., 2008, vol. 7, no. 7, pp. 814—818. https://doi.org/10.1039/b718907a

    Article  PubMed  CAS  Google Scholar 

  43. Fleming, A. and Copp, A.J., Embryonic folate metabolism and mouse neural tube defects, Science, 1998, vol. 280, no. 5372, pp. 2107—2109.

    PubMed  Article  CAS  Google Scholar 

  44. Holick, M.F., Vitamin D: importance in the prevention of cancers, type 1 diabetes, heart disease, and osteoporosis, Am. J. Clin. Nutr., 2004, vol. 79, no. 3, pp. 362—371.

    PubMed  Article  CAS  Google Scholar 

  45. Norman, A.W., From vitamin D to hormone D: fundamentals of the vitamin D endocrine system essential for good health, Am. J. Clin. Nutr., 2008, vol. 88, no. 2, pp. 491S—499S.

    PubMed  Article  CAS  Google Scholar 

  46. Campino, S., Kwiatkowski, D., and Dessein, A., Mendelian and complex genetics of susceptibility and resistance to parasitic infections, Semin. Immunol., 2006, vol. 18, no. 6, pp. 411—422.

    PubMed  Article  CAS  Google Scholar 

  47. Ingram, C.J., Mulcare, C.A., and Itan, Y., Lactose digestion and the evolutionary genetics of lactase persistence, Hum. Genet., 2009, vol. 124, no. 6, pp. 579—591. https://doi.org/10.1007/s00439-008-0593-6

    Article  PubMed  CAS  Google Scholar 

  48. Pouillot, R., Hoelzer, K., Jackson, K.A., et al., Relative risk of listeriosis in foodborne diseases active surveillance network (FoodNet) sites according to age, pregnancy, and ethnicity, Clin. Infect. Dis., 2012, vol. 54, pp. S405—S410. https://doi.org/10.1093/cid/cis269

    Article  PubMed  Google Scholar 

  49. Herrera, E., Lipid metabolism in pregnancy and its consequences in the fetus and newborn, Endocrine, 2002, vol. 19, no. 1, pp. 43—55.

    PubMed  Article  CAS  Google Scholar 

  50. Goldin, B.R., Adlercreutz, H., Gorbach, S.L., et al., Estrogen excretion patterns and plasma levels in vegetarian and omnivorous women, N. Engl. J. Med., 1982, vol. 307, no. 25, pp. 1542—1547.

    PubMed  Article  CAS  Google Scholar 

  51. Flaxman, S.M. and Sherman, P.W., Morning sickness: a mechanism for protecting mother and embryo, Q. Rev. Biol., 2000, vol. 75, no. 2, pp. 113—148.

    PubMed  Article  CAS  Google Scholar 

  52. Profet, M., Pregnancy sickness as adaptation: a deterrent to maternal ingestion of teratogens, in The Adapted Mind: Evolutionary Psychology and Generation of Culture, Barkow, J.H., Cosmides, L., and Tooby, J., Eds., New York: Oxford Univ. Press, 1992, pp. 327—365.

    Google Scholar 

  53. Palmer, J. and Palmer, L., Evolutionary Psychology: The Ultimate Origins of Human Behavior, New Jersey, 2001.

    Google Scholar 

  54. Sherman, P.W. and Flaxman, S.M., Nausea and vomiting of pregnancy in an evolutionary perspective, Am. J. Obstet. Gynecol., 2002, vol. 186, no. 5, pp. 190—197.

    Article  Google Scholar 

  55. Lacasse, A., Rey, E., Ferreira, E., et al., Epidemiology of nausea and vomiting of pregnancy: prevalence, severity, determinants, and the importance of race/ethnicity, BMC Pregnancy Childbirth, 2009, vol. 9, no. 6. https://doi.org/10.1186/1471-2393-9-26

  56. Pepper, G.V. and Craig Roberts, S., Rates of nausea and vomiting in pregnancy and dietary characteristics across populations, Proc. Biol. Sci., 2006, vol. 273, no. 1601, pp. 2675—2679.

    PubMed  PubMed Central  Google Scholar 

  57. Little, R.E. and Hook, E.B., Maternal alcohol and tobacco consumption and their association with nausea and vomiting during pregnancy, Acta Obstet. Gynecol. Scand., 1979, vol. 58, no. 1, pp. 15—17.

    PubMed  Article  CAS  Google Scholar 

  58. Tanaka, T., The San, Hunter-Gatherers of the Kalahari, Univ. Tokyo Press, 1980.

  59. Hoyt, G., Hickey, M.S., and Cordain, L., Dissociation of the glycaemic and insulinaemic responses to whole and skimmed milk, Br. J. Nutr., 2005, vol. 93, no. 2, pp. 175—177.

    PubMed  Article  CAS  Google Scholar 

  60. Zhang, C. and Ning, Y., Effect of dietary and lifestyle factors on the risk of gestational diabetes: review of epidemiologic evidence, Am. J. Clin. Nutr., 2011, vol. 94, no. 6, pp. 1975S—1979S. https://doi.org/10.3945/ajcn.110.001032

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Savitz, D.A., Janevic, T.M., Engel, S.M., et al., Ethnicity and gestational diabetes in New York city, 1995—2003, BJOG, 2008, vol. 115, no. 8, pp. 969—978. https://doi.org/10.1111/j.1471-0528.2008.01763.x

    Article  PubMed  CAS  Google Scholar 

  62. Atkinson, F.S., Foster-Powell, K., and Brand-Miller, J.C., International tables of glycemic index and glycemic load values: 2008, Diabetes Care, 2008, vol. 31, no. 12, pp. 2281—2283. https://doi.org/10.2337/dc08-1239

    Article  PubMed  PubMed Central  Google Scholar 

  63. Itan, Y., Jones, B.L., Ingram, C.J., et al., A worldwide correlation of lactase persistence phenotype and genotypes, BMC. Evol. Biol., 2010, vol. 10, pp. 36—47. https://doi.org/10.1186/1471-2148-10-36

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Ströhle, A. and Hahn, A., Diets of modern hunter-gatherers vary substantially in their carbohydrate content depending on ecoenvironments: results from an ethnographic analysis, Nutr. Res., 2011, vol. 31, no. 6, pp. 429—435. https://doi.org/10.1016/j.nutres.2011.05.003

    Article  PubMed  CAS  Google Scholar 

  65. Langer, O., Yogev, Y., Most, O., et al., Gestational diabetes: the consequences of not treating, Am. J. Obstet. Gynecol., 2005, vol. 192, no. 4, pp. 989—997.

    PubMed  Article  Google Scholar 

  66. Dickinson, S., Colagiuri, S., Faramus, E., et al., Postprandial hyperglycemia and insulin sensitivity differ among lean young adults of different ethnicities, J. Nutr., 2002, vol. 132, no. 9, pp. 2574—2579.

    PubMed  Article  CAS  Google Scholar 

  67. Henry, C.J., Lightowler, H.J., Newens, K., et al., Glycaemic index of common foods tested in the UK and India, Br. J. Nutr., 2008, vol. 99, no. 4, pp. 840—845.

    PubMed  Article  CAS  Google Scholar 

  68. Robillard, P.Y., Dekker, G., Chaouat, G., et al., Historical evolution of ideas on eclampsia/preeclampsia: a proposed optimistic view of preeclampsia, J. Reprod. Immunol., 2017, vol. 123, pp. 72—77. https://doi.org/10.1016/j.jri.2017.09.006

    Article  PubMed  PubMed Central  Google Scholar 

  69. Boeldt, D.S. and Bird, I.M., Vascular adaptation in pregnancy and endothelial dysfunction in preeclampsia, J. Endocrinol., 2017, vol. 232, no. 1, pp. R27—R44.

    PubMed  Article  CAS  Google Scholar 

  70. Gathiram, P. and Moodley, J., Pre-eclampsia: its pathogenesis and pathophysiology, Cardiovasc. J. Afr., 2016, vol. 27, no. 2, pp. 71—78. https://doi.org/10.5830/CVJA-2016-009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Tannetta, D. and Sargent, I., Placental disease and the maternal syndrome of preeclampsia: missing links?, Curr. Hypertens. Rep., 2013, vol. 15, no. 6, pp. 590—599. https://doi.org/10.1007/s11906-013-0395-7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Ridder, A., Giorgione, V., Khalil, A., et al., Preeclampsia: the relationship between uterine artery blood flow and trophoblast function, Int. J. Mol. Sci., 2019, vol. 20, no. 13, pp. 1—14. https://doi.org/10.3390/ijms20133263

    Article  CAS  Google Scholar 

  73. Adamyan, L.V., Artymuk, N.V., Bashmakova, N.V., et al., Gipertenzivnye rasstroistva vo vremya beremennosti, v rodakh i poslerodovom periode: preeklampsiya. Eklampsiya. Klinicheskie rekomendatsii (Hypertensive Disorders during Pregnancy, Childbirth and the Postpartum Period: Preeclampsia. Eclampsia. Clinical Recommendations), Moscow, 2016.

  74. Burton, G.J., Redman, C.W., Roberts, J.M., et al., Pre-eclampsia: pathophysiology and clinical implications, BMJ, 2019, vol. 366, no. l2381, pp. 1—15. https://doi.org/10.1136/bmj.l2381

    Article  Google Scholar 

  75. Robillard, P.Y., Dekker, G., Chaouat, G., et al., High incidence of early onset preeclampsia is probably the rule and not the exception worldwide: 20th anniversary of the reunion workshop. A summary, J. Reprod. Immunol., 2019, vol. 133, pp. 30—36. https://doi.org/10.1016/j.jri.2019.05.003

    Article  PubMed  Google Scholar 

  76. Turco, M.Y. and Moffett, A., Development of the human placenta, Development, 2019, vol. 146, no. 22, pp. 1—14. https://doi.org/10.1242/dev.163428

    Article  CAS  Google Scholar 

  77. Buurma, A.J., Turner, R.J., Drissen, J.H., et al., Genetic variants in pre-eclampsia: a meta-analysis, Hum. Reprod. Update, 2013, vol. 19, no. 3, pp. 289—303. https://doi.org/10.1093/humupd/dms060

    Article  PubMed  CAS  Google Scholar 

  78. Staines-Urias, E., Paez, M.C., Doyle, P., et al., Genetic association studies in pre-eclampsia: systematic meta-analyses and field synopsis, Int. J. Epidemiol., 2012, vol. 41, no. 6, pp. 1764—1775. https://doi.org/10.1093/ije/dys162

    Article  PubMed  Google Scholar 

  79. Yang, W., Zhu, Z., Wang, J., et al., Evaluation of association of maternal IL-10 polymorphisms with risk of preeclampsia by A meta-analysis, J. Cell. Mol. Med., 2014, vol. 18, no. 12, pp. 2466—2477. https://doi.org/10.1111/jcmm.12434

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Zhang, G., Zhao, J., Yi, J., et al., Association between gene polymorphisms on chromosome 1 and susceptibility to pre-eclampsia: an updated meta-analysis, Med. Sci. Monit., 2016, vol. 22, pp. 2202—2214.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  81. Zhou, L., Cheng, L., He, Y., et al., Association of gene polymorphisms of FV, FII, MTHFR, SERPINE1, CTLA4, IL10, and TNFalpha with pre-eclampsia in Chinese women, Inflamm. Res., 2016, vol. 65, no. 9, pp. 717—724. https://doi.org/10.1007/s00011-016-0953-y

    Article  PubMed  CAS  Google Scholar 

  82. Johnson, M.P., Brennecke, S.P., East, C.E., et al., Genome-wide association scan identifies a risk locus for preeclampsia on 2q14, near the inhibin, beta B gene, PLoS One, 2012, vol. 7, no. 3. e33666. https://doi.org/10.1371/journal.pone.0033666

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Williams, P.J. and Pipkin, F.B., The genetics of pre-eclampsia and other hypertensive disorders of pregnancy, Best. Pract. Res. Clin. Obstet. Gynaecol., 2011, vol. 25, no. 4, pp. 405—417. https://doi.org/10.1016/j.bpobgyn.2011.02.007

    Article  PubMed  PubMed Central  Google Scholar 

  84. Zhao, L., Bracken, M.B., and DeWan, A.T., Genome-wide association study of pre-eclampsia detects novel maternal single nucleotide polymorphisms and copy-number variants in subsets of the Hyperglycemia and Adverse Pregnancy Outcome (HAPO) study cohort, Ann. Hum. Genet., 2013, vol. 77, no. 4, pp. 277—287. https://doi.org/10.1111/ahg.12021

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Haig, D., Genetic conflicts in human pregnancy, Q. Rev. Biol., 1993, vol. 68, no. 4, pp. 495—532.

    PubMed  Article  CAS  Google Scholar 

  86. Pijnenborg, R., Vercruysse, L., and Hanssens, M., Fetal-maternal conflict, trophoblast invasion, preeclampsia, and the red queen, Hypertens. Pregnancy, 2008, vol. 27, no. 2, pp. 183—196. https://doi.org/10.1080/10641950701826711

    Article  PubMed  Google Scholar 

  87. Gong, J., Savitz, D., Stein, C., et al., Maternal ethnicity and preeclampsia in New York city, 1995—2003, Paediatr. Perinat. Epidemiol., 2012, vol. 26, no. 1, pp. 45—52. https://doi.org/10.1111/j.1365-3016.2011.01222.x

    Article  PubMed  Google Scholar 

  88. Nakimuli, A., Chazara, O., Byamugisha, J., et al., Pregnancy, parturition and preeclampsia in women of African ancestry, Am. J. Obstet. Gynecol., 2014, vol. 210, no. 6, pp. 510—520. https://doi.org/10.1016/j.ajog.2013.10.879

  89. Goffinet, F., Epidemiology, Ann. Fr. Anesth. Reanim., 2010, vol. 29, no. 3, pp. e7—e12. https://doi.org/10.1016/j.annfar.2010.02.010

    Article  PubMed  CAS  Google Scholar 

  90. Steegers, E.A., von Dadelszen, P., Duvekot, J.J., et al., Pre-eclampsia, Lancet, 2010, vol. 376, no. 9741, pp. 631—644. https://doi.org/10.1016/S0140-6736(10)60279-6

    Article  PubMed  Google Scholar 

  91. Xiao, J., Shen, F., Xue, Q., et al., Is ethnicity a risk factor for developing preeclampsia? An analysis of the prevalence of preeclampsia in China, J. Hum. Hypertens., 2014, vol. 28, no. 11, pp. 694—698. https://doi.org/10.1038/jhh.2013.148

    Article  PubMed  CAS  Google Scholar 

  92. Reyes, L., Garcia, R., Ruiz, S., et al., Nutritional status among women with pre-eclampsia and healthy pregnant and non-pregnant women in a Latin American country, J. Obstet. Gynaecol. Res., 2012, vol. 38, no. 3, pp. 498—504. https://doi.org/10.1111/j.1447-0756.2011.01763.x

    Article  PubMed  Google Scholar 

  93. Mol, B.W.J., Roberts, C.T., Thangaratinam, S., et al., Pre-eclampsia, Lancet, 2016, vol. 387, no. 10022, pp. 999—1011. https://doi.org/10.1016/S0140-6736(15)00070-7

    Article  PubMed  Google Scholar 

  94. Brown, I.J., Tzoulaki, I., Candeias, V., et al., Salt intakes around the world: implications for public health, Int. J. Epidemiol., 2009, vol. 38, no. 3, pp. 791—813. https://doi.org/10.1093/ije/dyp139

    Article  PubMed  Google Scholar 

  95. Wilson, M.J., Lopez, M., Vargas, M., et al., Greater uterine artery blood flow during pregnancy in multigenerational (Andean) than shorter-term (European) high-altitude residents, Am. J. Physiol. Regul. Integr. Comp. Physiol., 2007, vol. 293, no. 3, pp. R1313—R1324.

    PubMed  Article  CAS  Google Scholar 

  96. Ahmed, S.I.Y., Ibrahim, M.E., and Khalil, E.A.G., High altitude and pre-eclampsia: adaptation or protection, Med. Hypotheses, 2017, vol. 104, pp. 128—132. https://doi.org/10.1016/j.mehy.2017.05.007

    Article  PubMed  CAS  Google Scholar 

  97. Handa, V.L., Lockhart, M.E., Fielding, J.R., et al., Racial differences in pelvic anatomy by magnetic resonance imaging, Obstet. Gynecol., 2008, vol. 111, no. 4, pp. 914—920. https://doi.org/10.1097/AOG.0b013e318169ce03

    Article  PubMed  PubMed Central  Google Scholar 

  98. Agius, A., Sultana, R., Camenzuli, C., et al., An update on the genetics of pre-eclampsia, Minerva Ginecol., 2017, vol. 70, no. 4, pp. 465—479. https://doi.org/10.23736/S0026-4784.17.04150-8

    Article  PubMed  Google Scholar 

  99. Robillard, P.Y., Hulsey, T.C., Dekker, G.A., et al., Preeclampsia and human reproduction: an essay of a long term reflection, J. Reprod. Immunol., 2003, vol. 59, no. 2, pp. 93—100.

    PubMed  Article  Google Scholar 

  100. Baird, J., Eclampsia in a lowland gorilla, Am. J. Obstet. Gynecol., 1981, vol. 141, no. 3, pp. 345—346.

    PubMed  Article  Google Scholar 

  101. Thornton, J.G. and Onwude, J.L., Convulsions in pregnancy in related gorillas, Am. J. Obstet. Gynecol., 1992, vol. 167, no. 1, pp. 240—241.

    PubMed  Article  CAS  Google Scholar 

  102. Stout, C. and Lemmon, W.B., Glomerular capillary endothelial swelling in a pregnant chimpanzee, Am. J. Obstet. Gynecol., 1969, vol. 105, no. 2, pp. 212—215.

    PubMed  Article  CAS  Google Scholar 

  103. Krugner-Higby, L., Luck, M., Hartley, D., et al., High-risk pregnancy in rhesus monkeys (Macaca mulatta): a case of ectopic, abdominal pregnancy with birth of a live, term infant, and a case of gestational diabetes complicated by pre-eclampsia, J. Med. Primatol., 2009, vol. 38, no. 4, pp. 252—256. https://doi.org/10.1111/j.1600-0684.2009.00349.x

    Article  PubMed  PubMed Central  Google Scholar 

  104. Abrams, E.T. and Rutherford, J.N., Framing postpartum hemorrhage as a consequence of human placental biology: an evolutionary and comparative perspective, Am. Anthropol., 2011, vol. 113, no. 3, pp. 417—430. https://doi.org/10.1111/j.1548-1433.2011.01351.x

    Article  PubMed  PubMed Central  Google Scholar 

  105. Crosley, E.J., Elliot, M.G., Christians, J.K., et al., Placental invasion, preeclampsia risk and adaptive molecular evolution at the origin of the great apes: evidence from genome-wide analyses, Placenta, 2013, vol. 34, no. 2, pp. 127—132. https://doi.org/10.1016/j.placenta.2012.12.001

    Article  PubMed  CAS  Google Scholar 

  106. Elliot, M.G. and Crespi, B.J., Genetic recapitulation of human pre-eclampsia risk during convergent evolution of reduced placental invasiveness in eutherian mammals, Philos. Trans. R. Soc., B, 2015, vol. 370, no. 1663, p. 20140069. https://doi.org/10.1098/rstb.2014.0069

  107. Vogel, P., The current molecular phylogeny of eutherian mammals challenges previous interpretations of placental evolution, Placenta, 2005, vol. 26, nos. 8—9, pp. 591—596.

    PubMed  Article  CAS  Google Scholar 

  108. Carter, A.M. and Enders, A.C., Comparative aspects of trophoblast development and placentation, Reprod. Biol. Endocrinol., 2004, vol. 2, no. 46, pp. 1—15.

    Article  CAS  Google Scholar 

  109. Elliot, M. and Crespi, B., Phylogenetic evidence for early hemochorial placentation in eutheria, Placenta, 2009, vol. 30, no. 11, pp. 949—967. https://doi.org/10.1016/j.placenta.2009.08.004

    Article  PubMed  CAS  Google Scholar 

  110. Mess, A. and Carter, A.M., Evolutionary transformations of fetal membrane characters in Eutheria with special reference to Afrotheria, J. Exp. Zool., Part B, 2006, vol. 306, no. 2, pp. 140—163.

    Google Scholar 

  111. Cole, L.A., Khanlian, S.A., and Kohorn, E.I., Evolution of the human brain, chorionic gonadotropin and hemochorial implantation of the placenta: insights into origins of pregnancy failures, preeclampsia and choriocarcinoma, J. Reprod. Med., 2008, vol. 53, no. 8, pp. 549—557.

    PubMed  CAS  Google Scholar 

  112. Eisenberg, J.F., The Mammalian Radiations: An Analysis of Trends in Evolution, Adaptation and Behavior, Chicago: Univ. Chicago Press, 1983.

    Google Scholar 

  113. Chaline, J., Increased cranial capacity in hominid evolution and preeclampsia, J. Reprod. Immunol., 2003, vol. 59, no. 2, pp. 137—152.

    PubMed  Article  Google Scholar 

  114. Robillard, P.Y., Dekker, G.A., and Hulsey, T.C., Evolutionary adaptations to pre-eclampsia/eclampsia in humans: low fecundability rate, loss of oestrus, prohibitions of incest and systematic polyandry, Am. J. Reprod. Immunol., 2002, vol. 47, no. 2, pp. 104—111.

    PubMed  Article  Google Scholar 

  115. Capellini, I., Venditti, C., and Barton, R., Placentation and maternal investment in mammals, Am. Nat., 2011, vol. 177, no. 1, pp. 86—98. https://doi.org/10.1086/657435

    Article  PubMed  Google Scholar 

  116. Carter, A.M. and Pijnenborg, R., Evolution of invasive placentation with special reference to non-human primates., Best. Pract. Res. Clin. Obstet. Gynaecol., 2011, vol. 25, no. 3, pp. 249—257. https://doi.org/10.1016/j.bpobgyn.2010.10.010

    Article  PubMed  Google Scholar 

  117. Elliot, M. and Crespi, B., Placental invasiveness and brain-body allometry in eutherian mammals, J. Evol. Biol., 2008, vol. 21, no. 6, pp. 1763—1778. https://doi.org/10.1111/j.1420-9101.2008.01590.x

    Article  PubMed  CAS  Google Scholar 

  118. Martin, R.D., The evolution of human reproduction: a primatological perspective, Am. J. Phys. Anthropol., 2007, vol. 134, no. 45, pp. 59—84.

    Article  Google Scholar 

  119. Dunsworth, H.M., Warrener, A.G., Deacon, T., et al., Metabolic hypothesis for human altriciality, Proc. Natl. Acad. Sci. U.S.A., 2012, vol. 109, no. 38, pp. 15212—15216.

    PubMed  PubMed Central  Article  Google Scholar 

  120. Pawlwski, B., Why are human newborns so big and fat?, Hum. Evol., 1998, vol. 13, no. 1, pp. 65—72.

    Article  Google Scholar 

  121. Cunnane, S.C. and Crawford, M.A., Survival of the fattest: fat babies were the key to evolution of the large human brain, Comp. Biochem. Physiol., Part A: Mol. Integr. Physiol., 2003, vol. 136, no. 1, pp. 17—26.

    Article  CAS  Google Scholar 

  122. Than, N.G., Romero, R., Xu, Y., et al., Evolutionary origins of the placental expression of chromosome 19 cluster galectins and their complex dysregulation in preeclampsia, Placenta, 2014, vol. 35, no. 11, pp. 855—865. https://doi.org/10.1016/j.placenta.2014.07.015

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Zadora, J., Singh, M., Herse, F., et al., Disturbed placental imprinting in preeclampsia leads to altered expression of DLX5, a human-specific early trophoblast marker, Circulation, 2017, vol. 136, no. 19, pp. 1824—1839. https://doi.org/10.1161/CIRCULATIONAHA.117.028110

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Kaartokallio, T., Wang, J., Heinonen, S., et al., Exome sequencing in pooled DNA samples to identify maternal pre-eclampsia risk variants, Sci. Rep., 2016, vol. 6, pp. 1—9. https://doi.org/10.1038/srep29085

    Article  CAS  Google Scholar 

  125. Serebrova, V.N., Evolutionary genetic analysis of the role of regulatory genomic regions in the formation of hereditary predisposition to preeclampsia, Cand. Sci. (Med.) Dissertation, Tomsk, 2018.

  126. Serebrova, V.N., Trifonova, E.A., and Stepanov, V.A., Evolutionary genetic analysis of the role of regulatory regions in NDRG1 gene in the formation of the hereditary predisposition to preeclampsia in different ethnic groups. Med. Genet., 2018, vol. 17, no. 1(187), pp. 32—36. https://doi.org/10.25557/2073-7998.2018.01.32-36

  127. Serebrova, V.N., Trifonova, E.A., and Stepanov, V.A., Evolutionary genetic analysis of the role of regulatory regions in CORO2A gene in the development of hereditary predisposition to preeclampsia in Russian and Yakut ethnic groups, Nauch. Rezul’t. Biomed. Issled., 2018, vol. 4, no. 3, pp. 38—48. https://doi.org/10.18413/2313-8955-2018-4-3-0-4

    Article  Google Scholar 

  128. Trifonova, E.A., Gabidulina, T.V., Ershov, N.I., et al., Analysis of the placental tissue transcriptome of normal and preeclampsia complicated pregnancies, Acta Nat., 2014, vol. 6, no. 2(21), pp. 77—90.

  129. Nishizawa, H., Ota, S., Suzuki, M., et al., Comparative gene expression profiling of placentas from patients with severe pre-eclampsia and unexplained fetal growth restriction, Reprod. Biol. Endocrinol., 2011, vol. 9, p. 107. https://doi.org/10.1186/1477-7827-9-107

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Sitras, V., Paulssen, R.H., Gronaas, H., et al., Differential placental gene expression in severe preeclampsia, Placenta, 2009, vol. 30, no. 5, pp. 424—433. https://doi.org/10.1016/j.placenta.2009.01.012

    Article  PubMed  CAS  Google Scholar 

  131. Loset, M., Mundal, S.B., Johnson, M.P., et al., A transcriptional profile of the decidua in preeclampsia, Am. J. Obstet. Gynecol., 2011, vol. 204, no. 1, pp. 1—27. https://doi.org/10.1016/j.ajog.2010.08.043

    Article  CAS  Google Scholar 

  132. Meng, T., Chen, H., Sun, M., et al., Identification of differential gene expression profiles in placentas from preeclamptic pregnancies versus normal pregnancies by DNA microarrays, OMICS, 2012, vol. 16, no. 6, pp. 301—311. https://doi.org/10.1089/omi.2011.0066

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Chen, B., Nelson, D.M., and Sadovsky, Y., N-Myc downregulated gene 1 (Ndrg1) modulates the response of term human trophoblasts to hypoxic injury, J. Biol. Chem., 2006, vol. 281, no. 5, pp. 2764—2772.

    PubMed  Article  CAS  Google Scholar 

  134. Louwen, F., Muschol-Steinmetz, C., Reinhard, J., et al., A lesson for cancer research: placental microarray gene analysis in preeclampsia, Oncotarget, 2012, vol. 3, no. 8, pp. 759—773.

    PubMed  PubMed Central  Article  Google Scholar 

  135. Huang, W., Ghisletti, S., Saijo, K., et al., Coronin 2A mediates actin-dependent de-repression of inflammatory response genes, Nature, 2011, vol. 470, no. 7334, pp. 414—418. https://doi.org/10.1038/nature09703

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Zhuang, B., Luo, X., Rao, H., et al., Oxidative stress-induced C/EBPβ inhibits β-catenin signaling molecule involving in the pathology of preeclampsia, Placenta, 2015, vol. 36, no. 8, pp. 839—846. https://doi.org/10.1016/j.placenta.2015.06.016

    Article  PubMed  CAS  Google Scholar 

  137. Tinel, M., Berson, A., Elkahwaji, J., et al., Downregulation of cytochromes P450 in growth-stimulated rat hepatocytes: role of c-Myc induction and impaired C/EBP binding to DNA, J. Hepatol., 2003, vol. 39, no. 2, pp. 171—178.

    PubMed  Article  CAS  Google Scholar 

  138. Gathiram, P. and Moodley, J., Pre-eclampsia: its pathogenesis and pathophysiology, Cardiovasc. J. Afr., 2016, vol. 27, no. 2, pp. 71—78. https://doi.org/10.5830/CVJA-2016-009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Henn, B.M., Cavalli-Sforza, L.L., and Feldman, M.W., The great human expansion, Proc. Natl. Acad. Sci. U.S.A., 2012, vol. 109, no. 44, pp. 17758—17764. https://doi.org/10.1073/pnas.1212380109

    Article  PubMed  PubMed Central  Google Scholar 

  140. Wells, J.C.K., Nesse, R.M., Sear, R., et al., Evolutionary public health: introducing the concept, Lancet, 2017, vol. 390, no. 10093, pp. 500—509. https://doi.org/10.1016/S0140-6736(17)30572-X

    Article  PubMed  Google Scholar 

Download references

Funding

This work was financially supported by the Russian Foundation for Basic Research (project no. 18-29-13045).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Serebrova.

Ethics declarations

Conflict of interest. The authors declare that they have no conflict of interest.

Statement of compliance with standards of research involving humans as subjects. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants involved in the study.

Additional information

Translated by D. Novikova

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Serebrova, V.N., Trifonova, E.A. & Stepanov, V.A. Pregnancy as a Factor of Adaptive Human Evolution. The Role of Natural Selection in the Origin of Preeclampsia. Russ J Genet 57, 23–35 (2021). https://doi.org/10.1134/S1022795421010142

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795421010142

Keywords:

  • natural selection
  • adaptive evolution
  • evolutionary medicine
  • preeclampsia
  • placenta