Skip to main content
Log in

Chloroplast DNA Variation and Phylogeography of Pedunculate Oak Quercus robur L. in the Eastern Part of the Range

  • PLANT GENETICS
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Chloroplast DNA variation was investigated in 42 populations of pedunculate oak, Quercus robur L., in the European part of Russia, Belarus, Poland, Ukraine, the Urals, and the Caucasus. Restriction analysis and sequencing, as well as chloroplast DNA microsatellite loci (cpSSR), were used as genetic markers. For successful amplification and sequencing, new oak-specific primers were designed. For the first time for Q. robur, nucleotide sequences of three fragments (psaA-trnS, psbC-trnD, and trnT-trnF) were obtained with the determination of phylogenetic relationships among 13 identified haplotypes. In the eastern part of the range, several divergent chloroplast DNA lineages were identified. The haplotype groups were characterized by a nonrandom geographic distribution, which probably reflected the history of oak colonization in these regions. Sharp population differentiation in terms of haplotype composition and the level of variation was revealed. Specifically, in the eastern part of the Russian Plain and in the Urals, two haplotypes are widespread, which are disappearing in the west (Northwestern Russia, Belarus, Poland, and Western Ukraine), where nine haplotypes are found that are absent in east. Geographic structure of chloroplast DNA variation in pedunculate oak from Eastern Europe is similar to that in small-leaved lime (Semerikova et al., 2020), another representative of European temperate forests, in which, like in oak in this part of the range, sharp differences between western and eastern populations were observed. It seems likely that this is the result of postglacial colonization by both species from different, long isolated refugia, some of which were located in the east of the studied areas. In the Urals, parallel differentiation of oak and lime between the southern part (Ural River and Belaya River basins) and more northern regions (Ufa River basin and Middle Urals) was revealed, which can be explained by different historical colonization patterns of these regions by broad-leaved vegetation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Denk, T., Grimm, G.W., Manos, P.S., et al., An updated infrageneric classification of the oaks: review of previous taxonomic schemes and synthesis of evolutionary patterns, in Oaks Physiological Ecology: Exploring the Functional Diversity of Genus Quercus L., Gil-Pelegrin, E., Peguero-Pina, J.J., and Sancho-Knapik, D., Eds., Cham, Switzerland: Springer-Verlag, 2017, vol. 7, pp. 13—38.

  2. Kremer, A. and Hipp, A.L., Oaks: an evolutionary success story, New Phytol., 2020, vol. 226, no. 4, pp. 987—1011. https://doi.org/10.1111/nph.16274

    Article  PubMed  Google Scholar 

  3. Arealy derev’ev i kustarnikov SSSR (Distribution Ranges of Trees and Shrubs of the Soviet Union), Sokolov, S.Ya., Svyazeva, O.A., and Kubli, V.A., Eds., Leningrad: Nauka, 1977, vol. 1.

    Google Scholar 

  4. Dumolin-Lapegue, S., Demesure, B., Fineschi, S., et al., Phylogeographic structure of white oaks throughout the European continent, Genetics, 1997, vol. 146, no. 4, pp. 1475—1487.

    Article  CAS  Google Scholar 

  5. Petit, R.J., Csaikl, U.M., Bordacs, S., et al., Chloroplast DNA variation in European white oaks—phylogeography and patterns of diversity based on data from over 2600 populations, For. Ecol. Manage., 2002, vol. 156, nos. 1—3, pp. 5—26. https://doi.org/10.1016/S0378-1127(01)00645-4

    Article  Google Scholar 

  6. Petit, R.J., Brewer, S., Bordacs, S., et al., Identification of refugia and postglacial colonisation routes of European white oaks based on chloroplast DNA and fossil pollen evidence, For. Ecol. Manage., 2002, vol. 156, pp. 49—74. https://doi.org/10.1016/S0378-1127(01)00634-X

    Article  Google Scholar 

  7. Csaikl, U.M., Glaz, I. Baliuckas, V., et al., DNA variation of white oak in the Baltic countries and Poland, For. Ecol. Manage., 2002, vol. 156, nos. 1—3, pp. 211—222. https://doi.org/10.1016/S0378-1127(01)00644-2

    Article  Google Scholar 

  8. Bordacs, S., Popescu, F., Slade, D., et al., Chloroplast DNA variation of white oaks in northern Balkans and in the Carpathian Basin, For. Ecol. Manage., 2002, vol. 156, nos. 1—3, pp. 197—209. https://doi.org/10.1016/S0378-1127(01)00643-0

    Article  Google Scholar 

  9. Brewer, S., Cheddadi, R., de Beaulieu, J.-L., et al., The spread of deciduous Quercus throughout Europe since the last glacial period, For. Ecol. Manage., 2002, vol. 156, nos. 1—3, pp. 27—48. https://doi.org/10.1016/S0378-1127(01)00646-6

    Article  Google Scholar 

  10. Evolyutsiya ekosistem Evropy pri perekhode ot pleistotsena k golotsenu (24—8 tys. l. n.) (Evolution of European Ecosystems during the Pleistocene—Holocene Transition (24—8 kyr BP)), van Kolfschoten, T. and Markova, A.K., Eds., Moscow: KMK, 2008.

  11. Markova, A.K., Simakova, A.N., and Puzachenko, A.Y., Ecosystems of Eastern Europe at the time of maximum cooling of the Valdai glaciation (24—18 kyr BP) inferred from data on plant communities and mammal assemblages, Quat. Int., 2009, vol. 201, pp. 53—59. https://doi.org/10.1016/j.quaint.2008.05.020

    Article  Google Scholar 

  12. Denisov, A.K., Postglacial dynamics of the northern border of the pedunculate oak range in the USSR and phylocenogenesis of northern oak forests, Lesovedenie, 1980, no. 1, pp. 3—11.

  13. Semerikova, S.A., Isakov, I.Y., and Semerikov, V.L., Chloroplast DNA variation shed light on the history of lime tree (Tilia cordata s. l.) in the eastern part of the range, Russ. J. Genet., 2020, vol. 56, no. 2, pp. 192—203. https://doi.org/10.1134/S1022795420020118

    Article  CAS  Google Scholar 

  14. Dering, M., Lewandowski, A., Ufnalski, K., and Kedzierska, A., How far to the east was the migration of white oaks from the Iberian refugium?, Silva Fenn., 2008, vol. 42, no. 3, pp. 327—335. https://doi.org/10.14214/sf.240

    Article  Google Scholar 

  15. Chmielewski, M., Meyza, K., Chybicki, I.J., et al., Chloroplast microsatellites as a tool for phylogeographic studies: the case of white oaks in Poland, iFor.—Biogeosci. For., 2015, vol. 8, pp. 765—771. https://doi.org/10.3832/ifor1597-008

    Article  Google Scholar 

  16. Slade, D., Skvorc, Z., Ballian, D., et al., The chloroplast DNA polymorphisms of white oaks of section Quercus in the Central Balkans, Silvae Genet., 2008, vol. 57, nos. 4—5, pp. 227—234. https://doi.org/10.1515/sg-2008-0035

    Article  Google Scholar 

  17. Curtu, A.L., Sofletea, N., Toader, A.V., and Enescu, M.C., Leaf morphological and genetic differentiation between Quercus robur L. and its closest relative, the drought-tolerant Quercus pedunculiflora K. Koch., Ann. For. Sci., 2011, vol. 68, no. 7, pp. 1163—1172. https://doi.org/10.1007/s13595-011-0105-z

    Article  Google Scholar 

  18. Kovalevich, O.A., Kagan, D.I., and Padutov, V.E., SSRP analysis of chloroplast DNA of pedunculate oak growing in Belarus, Dokl. Nats. Akad. Navuk Belarusi, 2011, vol. 55, no. 6, pp. 100—104.

    CAS  Google Scholar 

  19. Kovalevich, O.A., Genogeography of pedunculate oak in Belarus inferred from chloroplast DNA analysis, Extended Abstract of Cand. Sci. Dissertation, Inst. Lesa Nats. Akad. Navuk Belarusi, Gomel’, 2013.

  20. Deguilloux, M.F., Dumolin-Lapegue, S., Gielly, L., et al., A set of primers for the amplification of chloroplast microsatellites in Quercus, Mol. Ecol. Notes, 2003, vol. 3, no. 1, pp. 24—27. https://doi.org/10.1046/j.1471-8286.2003.00339.x

    Article  CAS  Google Scholar 

  21. Blanc-Jolivet, C. and Liesebach, M., Tracing the origin and species identity of Quercus robur and Quercus petraea in Europe: a review, Silvae Genet., 2015, vol. 64, no. 4, pp. 182—193. https://doi.org/10.1515/sg-2015-0017

    Article  Google Scholar 

  22. Devey, M.E., Bell, J.C., Smith, D.N., et al., A genetic linkage map for Pinus radiata based on RFLP, RAPD and microsatellite markers, Theor. Appl. Genet., 1996, vol. 92, no. 6, pp. 673—679. https://doi.org/10.1007/BF00226088

    Article  PubMed  CAS  Google Scholar 

  23. Demesure, B., Sodzi, N., and Petit, R.J., A set of universal primers for amplification of polymorphic noncoding regions of mitochondrial and chloroplast DNA in plants, Mol. Ecol., 1995, vol. 4, no. 1, pp. 129—131. https://doi.org/10.1111/j.1365-294X.1995.tb00201.x

    Article  PubMed  CAS  Google Scholar 

  24. Taberlet, P., Gielly, L., Pautou, G., and Bouvet, J., Universal primers for amplification of 3 non-coding regions of chloroplast DNA, Plant Mol. Biol., 1991, vol. 17, no. 5, pp. 1105—1109. https://doi.org/10.1007/BF00037152

    Article  PubMed  CAS  Google Scholar 

  25. Rozen, S. and Skaletsky, H.J., Primer 3 on the WWW for general users and for biologist programmers, in Bioinformatics Methods and Protocols: Methods in Molecular Biology, Krawetz, S. and Misener, S., Eds., Totowa, N.J.: Humana, 2000, pp. 365—386.

    Google Scholar 

  26. Hall, T.A., BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows95/98/NT, Nucleic Acids Symp. Ser., 1999, vol. 41, pp. 95—98. https://doi.org/10.1111/jbi.12867

    Article  CAS  Google Scholar 

  27. Ronquist, F. and Huelsenbeck, J.P., MrBayes 3: Bayesian phylogenetic inference under mixed models, Bioinformatics, 2003, vol. 19, no. 12, pp. 1572—1574. https://doi.org/10.1093/bioinformatics/btg180

    Article  CAS  Google Scholar 

  28. Swofford, D.L., PAUP*: Phylogenetic Analysis Using Parsimony (*and Other Methods): Version 4.0 beta 10, Sunderland: Sinauer Associates, 2002.

    Google Scholar 

  29. Sork, V.L., Fitz-Gibbon, S.T., Puiu, D., et al., First draft assembly and annotation of the genome of a California endemic oak Quercus lobata Nee (Fagaceae), Genes Genomes Genet., 2016, vol. 6, no. 11, pp. 3485—3495. https://doi.org/10.1534/g3.116.030411

    Article  CAS  Google Scholar 

  30. Pham, K.K., Hipp, A.L., Manos, P.S., and Cronn, R.C., A time and a place for everything: phylogenetic history and geography as joint predictors of oak plastome phylogeny, Genome, 2017, vol. 60, no. 9, pp. 720—732. https://doi.org/10.1139/gen-2016-0191

    Article  PubMed  Google Scholar 

  31. Bandelt, H.J., Forster, P., and Röhl, A., Median-joining networks for inferring intraspecific phylogenies, Mol. Biol. Evol., 1999, vol. 16, no. 1, pp. 37—48. https://doi.org/10.1093/oxfordjournals.molbev.a026036

    Article  PubMed  CAS  Google Scholar 

  32. Nei, M., Molecular Evolutionary Genetics, New York: Columbia Univ. Press, 1987.

    Book  Google Scholar 

  33. Librado, P. and Rozas, J., DnaSP v5: a software for comprehensive analysis of DNA polymorphism data, Bioinformatics, 2009, vol. 25, pp. 1451—1452. https://doi.org/10.1093/bioinformatics/btp187

    Article  CAS  Google Scholar 

  34. Excoffier L., Lischer H. ARLEQUIN ver. 3.5: An Integrated Software Package for Population Genetics Data Analysis. Bern: Computational and Molecular Population Genetics Lab (CMPG). Institute of Ecology and Evolution, Univ. Bern, Bern, Switzerland, 2011.

  35. Dupanloup, I., Schneider, S., and Excoffier, L., A simulated annealing approach to define the genetic structure of populations, Mol. Ecol., 2002, vol. 11, no. 12, pp. 2571—2581. https://doi.org/10.1046/j.1365-294X.2002.01650.x

    Article  PubMed  CAS  Google Scholar 

  36. Semerikov, L.F., Populyatsionnaya struktura drevesnykh rastenii (na primere vidov duba evropeiskoi chasti SSSR i Kavkaza) (Population Structure of Arboraceous Plants (Exemplified by Oak Species of the European Part of the USSR and the Caucasus), Moscow: Nauka, 1986.

  37. Gomory, D., Yakovlev, I., Zhelev, P., et al., Genetic differentiation of oak populations within the Quercus robur/Quercus petraea complex in Central and Eastern Europe, Heredity, 2001, vol. 86, pp. 557—563. https://doi.org/10.1046/j.1365-2540.2001.00874.x

    Article  PubMed  CAS  Google Scholar 

  38. Gabitova, A.A., Yanbaev, Yu.A., and Red’kina, N.N., High genetic polymorphism of pedunculate oak populations on the western macroslope of the Southern Urals, Vestn. Bashk. Univ., Ser. Biol., 2015, vol. 20, no. 3, pp. 854—856.

    Google Scholar 

  39. Degen, B., Yanbaev, R., Yanbaev, Y., Genetic differentiation of Quercus robur in the South-Ural, Silvae Genet., 2019, vol. 68, no. 1, pp. 111—115. https://doi.org/10.2478/sg-2019-0019

    Article  Google Scholar 

  40. Ekhvaia, J., Simeone, M.C., Silakadze, N., and Abdaladze, O., Morphological diversity and phylogeography of the Georgian durmast oak (Q. petraea subsp. iberica) and related Caucasian oak species in Georgia (South Caucasus), Tree Genet. Genom., 2018, vol. 14, no. 2. https://doi.org/10.1007/s11295-018-1232-6

Download references

ACKNOWLEDGMENTS

We thank L.I. Agafonov, B.K. Gannibal, G.Yu. Konechnaya, N.V. Semerikov, A.H. Sozontov, E.G. Filippov, and Yu.Ya. Khrunyk for participation in the collection of oak accessions, A.I. Tsivilev and K.A. Panikovskaya for help in laboratory analyses, and an anonymous reviewer for constructive comments.

Funding

This study was performed within the framework of the state contract of the Institute of Plant and Animal Ecology of the Ural Branch of the Russian Academy of Sciences and was supported by the Russian Foundation for Basic Research (grant no. 18-04-01061A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Semerikova.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by N. Maleeva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Semerikova, S.A., Isakov, I.Y. & Semerikov, V.L. Chloroplast DNA Variation and Phylogeography of Pedunculate Oak Quercus robur L. in the Eastern Part of the Range. Russ J Genet 57, 47–60 (2021). https://doi.org/10.1134/S1022795421010130

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795421010130

Keywords:

Navigation