Skip to main content
Log in

Morphological Genetic Markers in Plants

  • REVIEWS AND THEORETICAL ARTICLES
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The review discusses the possible use of morphological genetic markers in plants. Definitions and terminology of such concepts as “marker,” “phenotype,” “genotype,” “epigenotype,” and “genetic marker” are given. The properties and distinguishing features of genetic markers are given. Some mutant marker forms are described and the feasibility of creating and utilizing collections of mutant marker forms for their practical use in genetics and breeding of agricultural plants is considered. It is indicated that the main sources of genotypic variation, the basis, reflection, and manifestation of which is polymorphism, including marker polymorphism, which manifests itself not only at the morphological but also at the biochemical or molecular levels, are mutations and recombinations. The role and significance of the first phenotypic genetic markers obtained from the fruit fly Drosophila by means of experimental mutagenesis methods is noted; it allowed T. Morgan and colleagues to establish the exact location of the genes in the linkage groups and use it as a basis to create the first genetic “maps” of Drosophila chromosomes. The main disadvantages of morphological genetic markers are that they are few in number and are influenced by environmental factors or depend on the stage of development of the plant or its organ or tissue in which they are found. In addition, they do not cover the entire genome, but are located in certain genomic loci, in which the genes are concentrated. This means that it is not possible to use morphological markers that do not cover the entire genome for the purpose of genotyping or establishing genetic distances. However, despite these exceptions, morphological markers still remain a relevant and very useful scientific tool in genetic and breeding practices. Many of these markers are genetically linked to important economically significant and agronomic traits, which makes it possible to drastically reduce the cost and simplify the production of new forms significant for genetics and breeding. It is noted that the problem of genetic analysis of economically valuable traits can be a field of activity for further methodological optimization and “bridge building” between classical and molecular genetics and plant selection, as well as other biological disciplines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Serebrovskii, A.S., Geneticheskii analiz (Genetic Analysis), Moscow: Nauka, 1970.

  2. Serebrovskii, A.S. and Volkova, K.V., The experience of analyzing a chromosome with two signaling genes, Izv. Akad. Nauk SSSR, Ser. Biol., 1940, no. 1, pp. 109—115.

  3. Rieger, R., Michaelis, A., and Green, M.M., Glossary of Genetics: Classical and Molecular, Berlin: Springer-Verlag, 1991. https://doi.org/10.1007/978-3-642-75333-6

    Book  Google Scholar 

  4. Glazko, V.I. and Glazko, G.V., Tolkovyi slovar’ terminov po obshchei i molekulyarnoi biologii, obshchei i prikladnoi genetike, selektsii, DNK-tekhnologii i bioinformatike v 2-kh tomakh (Explanatory Dictionary of Terms in General and Molecular Biology, General and Applied Genetics, Breeding, DNA Technology and Bioinformatics in Two Volumes), Moscow: Akademkniga, 2008.

  5. Kartel’, N.A., Makeeva, E.N., and Mezenko, A.M., Genetika: entsiklopedicheskii slovar’ (Genetics: An Encyclopedic Dictionary), Minsk: Belaruskaya Navuka, 2011.

  6. Zhuchenko, A.A. and Korol’, A.B., Rekombinatsiya v evolyutsii i selektsii (Recombination in Evolution and Breeding), Moscow, 1985.

    Google Scholar 

  7. Gershenzon, S.M., Osnovy sovremennoi genetiki (Foundations of Modern Genetics), Kiev: Naukova Dumka, 1983.

  8. Zhuchenko, A.A., Ekologicheskaya genetika kul’turnykh rastenii (adaptatsiya, rekombinogenez, agrobiotsenoz) (Ecological Genetics of Cultivated Plants (Adaptation, Recombinogenesis, Agrobiocenosis)), Kishinev: Shtiintsa, 1980.

  9. Johannsen, W., Elemente der exakten Erblichkeitslehre, Jena: Fischer, 1909. https://doi.org/10.5962/bhl.title.94247

  10. Valerik, M., Bartos, J., Kovarova, P., et al., High resolution FISH of super-stretched flow-sorted plant chromosomes, Plant J., 2004, vol. 37, pp. 940—950. https://doi.org/10.1111/j.1365-313X.2003.02010.x

    Article  CAS  Google Scholar 

  11. Harrison, G.E. and Heslop-Harrison, J.S., Centromeric repetitive DNA sequences in the genus Brassica, Theor. Appl. Genet., 1995, vol. 90, pp. 157—165. https://doi.org/10.1007/BF00222197

    Article  CAS  PubMed  Google Scholar 

  12. Fukui, K., Nakayama, S., Ohmido, N., et al., Quantitative karyotyping of three diploid Brassica species by imaging methods and localization of 45 SrDNA loci on the identified chromosomes, Theor. Appl. Genet., 1998, vol. 96, pp. 325—330. https://doi.org/10.1007/s001220050744

    Article  CAS  PubMed  Google Scholar 

  13. Snowdon, R.J., Friedrich, T., Friedt, W., and Kohler, W., Identifying the chromosomes of the A- and C-genome diploid Brassica species B. rapa (syn. campestris) and B. oleracea in their amphidiploid B. napus, Theor. Appl. Genet., 2002, vol. 104, pp. 533—538. https://doi.org/10.1007/s00122-001-0787-y

    Article  CAS  PubMed  Google Scholar 

  14. Alix, K., Ryder, C., Moore, J., et al., The genomic organization of retrotransposons in Brassica oleracea, Plant Mol. Biol., 2005, vol. 59, pp. 839—851. https://doi.org/10.1007/s00299-013-1399-0

    Article  CAS  PubMed  Google Scholar 

  15. Alix, K., Joets, J., Ryder, C., et al., The CACTA transposon Bot1 played a major role in Brassica genome divergence and gene proliferation, Plant J., 2008, vol. 56, pp. 1030—1044. https://doi.org/10.1111/j.1365313X.2008.03660.x

    Article  CAS  PubMed  Google Scholar 

  16. Sousa, A., Fuchs, J., and Renner, S.S., Molecular cytogenetics (FISH, GISH) of Coccinia grandis: a ca. 3 myr-old species of Cucurbitaceae with the largest Y/Autosome divergence in flowering plants, Cytogenet. Genome Res., 2013, vol. 139, pp. 107—118. https://doi.org/10.1159/000345370

    Article  CAS  PubMed  Google Scholar 

  17. Tomas, P.A., González, G.E., Schrauf, G.E., and Poggio, L., Chromosomal characterization in native populations of Elymus scabrifolius from Argentina through classical and molecular cytogenetics (FISH-GISH), Genome, 2012, vol. 55, pp. 591—598. https://doi.org/10.1007/s11427-012-4348-1

    Article  CAS  PubMed  Google Scholar 

  18. Waddington, C.H., An Introduction to Modern Genetics, London: Allen and Unwin, 1939.

    Google Scholar 

  19. Waddington, C.H., The epigenotype, Endeavour, 1942, vol. 1, pp. 18—20.

    Google Scholar 

  20. Waddington, C.H., Canalization of development and inheritance of acquired characters, Nature, 1942, vol. 150, pp. 563—565. https://doi.org/10.1038/150563a0

    Article  Google Scholar 

  21. Kalisz, S. and Purugganan, M.D., Epialleles via DNA methylation: consequences for plant evolution, Trends Ecol. Evol., 2004, vol. 19, pp. 309—314. https://doi.org/10.1016/j.tree.2004.03.034

    Article  PubMed  Google Scholar 

  22. Kimatu, J.N. and Bao, L., Epigenetic polymorphisms could contribute to the genomic conflicts and gene flow barriers resulting to plant hybrid necrosis, Afr. J. Biotechnol., 2010, vol. 9, pp. 8125—8133. https://doi.org/10.5897/AJB10.1043

    Article  CAS  Google Scholar 

  23. Zhang, M., Kimatu, J.N., Xu, K., and Bao, L., DNA cytosine methylation in plant development, J. Genet. Genomics, 2010, vol. 37, pp. 1—12. https://doi.org/10.1016/S1673-8527(09)60020-5

    Article  CAS  PubMed  Google Scholar 

  24. Séré, D. and Martin, A., Epigenetic regulation: another layer in plant nutrition, Plant Signaling Behav., 2019. https://doi.org/10.1080/15592324.2019.1686236

  25. Cahn, R.D., Factors affecting inheritance and expression of differentiation: some methods of analysis, Results and Problems in Cell Differentiation, Beerman, W. et al., Eds., 1969, vol. 1, p. 58.

  26. Chesnokov, Yu.V., Genetic markers: a comparative classification of molecular markers, Ovoshchi Ross., 2018, no. 3, pp. 11—15. https://doi.org/10.18619/2072-9146-2018-3-11-15

  27. Chesnokov, Yu.V., Variationes of linkage of genetic markers with the target gene and chromosome locus, Agrofizika, 2018, no. 2, pp. 40—45. https://doi.org/10.25695/AGRPH.2018.02.06

  28. Chesnokov, Yu.V., Biochemical markers in genetic investigations of cultivated crops: the pros and cons (review), S.-kh. Biol., 2019, vol. 54, no. 5, pp. 863—874. https://doi.org/10.15389/agrobiology.2019.5.863rus

    Article  Google Scholar 

  29. Chesnokov, Yu.V. and Kosolapov, V.M., Geneticheskie resursy rastenii i uskorenie selektsionnogo protsessa (Plant Genetic Resources and Acceleration of the Breeding Process), Moscow: Ugreshskaya Tipografiya, 2016.

  30. Chesnokov, Yu.V., Kocherina, N.V., and Kosolapov, V.M., Molekulyarnye markery v populyatsionnoi genetike i selektsii kul’turnykh rastenii (Molecular Markers in Population Genetics and Crop Breeding), Moscow: Ugreshskaya Tipografiya, 2019. https://doi.org/10.33814/monography_1614

  31. Morgan, T.H., Sex-limited inheritance in Drosophila, Science, 1910, vol. 32, pp. 120—122. https://doi.org/10.1126/science.32.812.120

    Article  CAS  PubMed  Google Scholar 

  32. Sturtevant, A.H., The linear arrangement of six sex-linked factors in Drosophila, as shown by their mode of association, J. Exp. Zool., 1913, vol. 14, pp. 43—59. https://doi.org/10.1002/jez.1400140104

    Article  Google Scholar 

  33. Sax, K., The association of size differences with seed-coat pattern and pigmentation in Phaseolus vulgaris, Genetics, 1923, vol. 8, pp. 552—560.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Wexelsen, H., Linkage between quantitative and qualitative characters in barley, Hereditas (Lund), 1933, vol. 17, pp. 323—341.

    Article  Google Scholar 

  35. Sturtevant, A.H., Thomas Hunt Morgan, Biogr. Mem. Natl. Acad. Sci. U.S.A., 1959, vol. 33, pp. 283—325.

    Google Scholar 

  36. Zhuchenko, A.A., Genetika tomatov (Tomato Genetics), Kishinev: Shtiintsa, 1973.

  37. Khush, G.S., List of gene markers maintained in the Rice Genetic Stock Center, IRRI, Rice Genet. Newslett., 1987, vol. 4, pp. 56—62.

    Google Scholar 

  38. Saito, T., Ariizumi, T., Okabe, Y., et al., TOMATOMA: a novel tomato mutant database distributing micro-tom mutant collections, Plant Cell Physiol., 2011, vol. 52, pp. 283—296. https://doi.org/10.1093/pcp/pcr004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Neuffer, M.G., Coe, E.H., and Wessler, S., Mutants of Maize, New York: Cold Spring Harbor Lab. Press, 1997.

    Google Scholar 

  40. Palmer, R.G. and Shoemaker, R.C., Soybean genetics, Soybean Institute of Field and Vegetative Crops, Hrustic, M., Vidic, M. and Jackovic, D., Eds., Novi Sad, Yugoslavia, 1998, pp. 45—82.

    Google Scholar 

  41. Bocharnikova, N.I., Mutant tomato gene pool and its use in genetic and breeding programs, Inf. Vestn. Vavilovskogo O-va Genet. Sel., 2008, vol. 12, no. 3, pp. 644—653.

    Google Scholar 

  42. Bocharnikova, N.I., Geneticheskaya kollektsiya mutantnykh form tomata i ee ispol’zovanie v selektsionno-geneticheskikh issledovaniyakh (Genetic Collection of Mutant Forms of Tomato and Its Use in Breeding and Genetic Research), Moscow: Vseross. Nauchno-Issled. Inst. Sel. Semenovodstva Ovotshnych Kultur Ross. Akad. S.-kh. Nauk, 2011.

  43. Smith, L., Moseman, A.H., Payne, K.T., and Weibel, D.E., Linkage studies in einkorn, J. Am. Soc. Agron., 1948, vol. 40, pp. 862—873.

    Article  Google Scholar 

  44. Goncharov, N.P. and Shumnyi, V.K., From preservation of genetic collections to organization of national project of plant gene pools’ conservation in permafrost, Inf. Vestn. Vavilovskogo O-va Genet. Sel., 2008, vol. 12, no. 3, pp. 509—523.

    Google Scholar 

  45. Winter, P. and Kahl, G., Molecular marker technologies for plant improvement, World J. Microbiol. Biotechnol., 1995, vol. 11, pp. 438—448. https://doi.org/10.1007/BF00364619

    Article  CAS  PubMed  Google Scholar 

  46. Weeden, N., Timmerman, G., and Lu, J., Identifying and mapping genes of economic significance, Euphytica, 1994, vol. 73, pp. 191—198. https://doi.org/10.1007/BF00027194

    Article  CAS  Google Scholar 

  47. Eagles, H., Bariana, H., Ogbonnaya, F., et al., Implementation of markers in Australian wheat breeding, Aust. J. Agric. Res., 2001, vol. 52, pp. 1349—1356. https://doi.org/10.1071/AR01067

    Article  CAS  Google Scholar 

  48. Lindstrom, E.W. and Humphrey, L.M., Comparative cytogenetic studies of tetraploid tomatoes from different origins, in Proceedings of the International Congress on Genetics, New York, 1932, vol. 2, pp. 118—119.

  49. McArthur, J.W., Linkage groups in the tomato, J. Genet., 1934, vol. 29, pp. 123—133.

    Article  Google Scholar 

  50. Barton, D.W., Comparative effects of X-ray and ultraviolet radiation on the differentiated chromosomes of the tomato, Cytologia, 1954, vol. 19, pp. 157—175. https://doi.org/10.1508/cytologia

    Article  Google Scholar 

  51. Stubbe, H., Mutanten der Kulturtomate Lycopersicon esculentum Miller: IV, Kulturpflanze, 1963, vol. XI, pp. 603—644.

    Article  Google Scholar 

  52. Stubbe, H., Mutanten der Kulturtomate Lycopersicon esculentum Miller: V, Kulturpflanze, 1964, vol. XII, pp. 121—152.

    Article  Google Scholar 

  53. Stubbe, H., Mutanten der Wildtomate Lycopersicon pimpinellifolium (Jusl.) Mill.: IV, Kulturpflanze, 1965, vol. XIII, pp. 517—544.

    Article  Google Scholar 

  54. Tanksley, S.D. and Mutschler, M.A., Linkage map of the tomato (Lycopersicon esculentum), in Genetic Maps, 1989, pp. 6.3—6.15.

  55. Bocharnikova, N.I. and Kozlova, V.M., Mutantnye formy tomatov (katalog) (Mutant Forms of Tomatoes (Catalog)), Kishinev: Shtiintsa, 1992.

  56. Kocherina, N.V., Artemyeva, A.M., and Chesnokov, Yu.V., Use of LOD-score technology in mapping quantitative trait loci in plants, Russ. Agric. Sci., 2011, vol. 37, pp. 201—204. https://doi.org/10.3103/S1068367411030098

    Article  Google Scholar 

  57. Soller, M. and Beckmann, J.S., Genetic polymorphism in varietal identification and genetic improvement, Theor. Appl. Genet., 1983, vol. 67, pp. 25—33. https://doi.org/10.1007/BF00303917

    Article  CAS  PubMed  Google Scholar 

  58. Young, N.D., A cautiously optimistic vision for marker-assisted breeding, Mol. Breed., 1999, vol. 5, pp. 505—510. https://doi.org/10.1023/A:1009684409326

    Article  Google Scholar 

  59. Dekkers, J.C. and Hospital, F., The use of molecular genetics in the improvement of agricultural populations, Nat. Rev. Genet., 2002, vol. 3, pp. 22—32. https://doi.org/10.1038/nrg701

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Chesnokov.

Ethics declarations

The authors declare that they have no conflict of interest.

The studies were performed without the use of animals and without the involvement of human subjects.

Additional information

Translated by A. Lisenkova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chesnokov, Y.V., Kosolapov, V.M. & Savchenko, I.V. Morphological Genetic Markers in Plants. Russ J Genet 56, 1406–1415 (2020). https://doi.org/10.1134/S1022795420120042

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795420120042

Keywords:

Navigation