Skip to main content
Log in

Functional Annotation of Genes of Predisposition to Schizophrenia and Celiac Disease

  • HUMAN GENETICS
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

In the present study, a functional annotation of genes predisposing to schizophrenia and celiac disease was carried out using Cytoscape version 3.7.1. The identified genes are involved (even jointly) in the regulation of the development and functioning of nerve cells and activation of the immune response. Common genes for both diseases (NOTCH4 and HLA-DQA1) are hereditary factors in the development of schizophrenia and celiac disease. According to the results of functional annotation, genes susceptible to schizophrenia and celiac disease were annotated by terms from Gene Ontology; the number of common groups of functions was 44. The results suggest that molecular mechanisms responsible for the differentiation and proliferation of cells of both the immune system and the nervous system are involved in the comorbid development of schizophrenia and celiac disease. It was found that a significant number (up to 179) of genes could be involved in the implementation of a single biological process. However, in some cases, the same gene could be represented in several related processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Chen, S.J., Chao,Y.L., Chen, C.Y., et al., Prevalence of autoimmune diseases in patients with schizophrenia: nationwide population-based study, Br. J. Psychiatry, 2012, vol. 200, no. 5, pp. 374—380. https://doi.org/10.1192/bjp.bp.111.092098

    Article  PubMed  Google Scholar 

  2. Eaton, W., Mortensen, P.B., Agerbo, E., et al., Coeliac disease and schizophrenia: population based case control study with linkage of Danish national registers, BMJ, 2004, vol. 328, no. 7437, pp. 438—439. https://doi.org/10.1136/bmj.328.7437.438

    Article  PubMed  PubMed Central  Google Scholar 

  3. Cascella, N.G., Kryszak, D., Bhatti, B., et al., Prevalence of celiac disease and gluten sensitivity in the United States clinical antipsychotic trials of intervention effectiveness study population, Schizophr. Bull., 2011, vol. 37, no. 1, pp. 94—100. https://doi.org/10.1093/schbul/sbp055

    Article  PubMed  Google Scholar 

  4. Wei, J. and Hemmings, G.P., Gene, gut and schizophrenia: the meeting point for the gene—environment interaction in developing schizophrenia, Med. Hypotheses, 2005, vol. 64, no. 3, pp. 547—552. https://doi.org/10.1016/j.mehy.2004.08.011

    Article  CAS  PubMed  Google Scholar 

  5. Jungerius, B.J., Bakker, S.C., Monsuur, A.J., et al., Is MYO9B the missing link between schizophrenia and celiac disease?, Am. J. Med. Genet.,Part B, 2008, vol. 147, no. 3, pp. 351—355. https://doi.org/10.1002/ajmg.b.30605

    Article  Google Scholar 

  6. Liang, X., Wang, S., Liu, L., et al., Integrating genome-wide association study with regulatory SNP annotation information identified candidate genes and pathways for schizophrenia, Aging, 2019, vol. 11, no. 11, pp. 3704—3715. https://doi.org/10.18632/aging.102008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kara, S., Hanna, A., Pirela-Morillo, G.A., et al., Molecular Interaction Network Approach (MINA) identifies association of novel candidate disease genes, MethodsX, 2019, vol. 6, pp. 1286—1291. https://doi.org/10.1016/j.mex.2019.05.031

    Article  PubMed  PubMed Central  Google Scholar 

  8. Bush, W.S. and Moore, J.H., Chapter 11: genome-wide association studies, PLoS Comput. Biol., 2012, vol. 8, no. 12. e1002822. https://doi.org/10.1371/journal.pcbi.1002822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Blake, A., Christie, K.R., Dolan, M.E., et al., Gene Ontology Consortium: going forward, Nucleic Acids Res., 2015, vol. 43, no. 1, pp. 1049—1056. https://doi.org/10.1093/nar/gku1179

    Article  CAS  Google Scholar 

  10. Huang, D.W., Sherman, B.T., and Lempicki, R.A., Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists, Nucleic Acids Res., 2009, vol. 37, no. 1, pp. 1—13. https://doi.org/10.1093/nar/gkn923

    Article  CAS  Google Scholar 

  11. Welter, D., MacArthur, J., Morales, J., et al., The NHGRI GWAS catalog, a curated resource of SNP-trait associations, Nucleic Acids Res., 2014, vol. 42, no. 1, pp. 1001—1006. https://doi.org/10.1093/nar/gkt1229

    Article  CAS  Google Scholar 

  12. Jiang, L.I., Collins, J., Davis, R., et al., Regulation of cAMP responses by the G12/13 pathway converges on adenylyl cyclase VII, J. Biol. Chem., 2008, vol. 283, no. 34, pp. 23429—23439. https://doi.org/10.1074/jbc.M803281200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hamann, J., Aust, G., Araç, D., et al., International union of basic and clinical pharmacology: XCIV. Adhesion G protein–coupled receptors, Pharmacol. Rev., 2015, vol. 67, no. 2, pp. 338—367. https://doi.org/10.1124/pr.114.009647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Southgate, L., Machado, R.D., Snape, K.M., et al., Gain-of-function mutations of ARHGAP31, a Cdc42/Rac1 GTPase regulator, cause syndromic cutis aplasia and limb anomalies, Am. J. Hum. Genet., 2011, vol. 88, no. 5, pp. 574—585. https://doi.org/10.1016/j.ajhg.2011.04.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dubois, P.C., Trynka, G., Franke, L., et al., Multiple common variants for celiac disease influencing immune gene expression, Nat. Genet., 2010, vol. 42, no. 4, pp. 295—302. https://doi.org/10.1038/ng.543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kurtanov, Kh.A., Danilova, A.L., Yakovleva, A.E., et al., Genetic research of HLA genes I and II class—DRB1, DQA1, and DQB1 in patients with celiac disease, Vestn. Gematol., 2015, vol. 11, no. 2, pp. 44—48.

    Google Scholar 

  17. Voorter, C.E., Lee, K.W., Smillie, D., et al., Sequence-based typing of HLA-DQA1: comprehensive approach showed molecular heterogeneity, Tissue Antigens, 2007, vol. 69, no. 1, pp. 76—81. https://doi.org/10.1111/j.1399-0039.2006.761_1.x

    Article  CAS  PubMed  Google Scholar 

  18. Do, T.N., Ucisik-Akkaya, E., Davis, C.F., et al., An intronic polymorphism of IRF4 gene influences gene transcription in vitro and shows a risk association with childhood acute lymphoblastic leukemia in males, Biochim. Biophys. Acta, 2010, vol. 1802, no. 2, pp. 292—300. https://doi.org/10.1016/j.bbadis.2009.10.015

    Article  CAS  PubMed  Google Scholar 

  19. Petit, M.M., Mols, R., Schoenmakers, E.F., et al., LPP, the preferred fusion partner gene of HMGIC in lipomas, is a novel member of the LIM protein gene family, Genomics, 1996, vol. 36, no. 1, pp. 118—129. https://doi.org/10.1006/geno.1996.0432

    Article  CAS  PubMed  Google Scholar 

  20. Gorokhova, S., Bibert, S., Geering, K., and Heintz, N., A novel family of transmembrane proteins interacting with β subunits of the Na, K-ATPase, Hum. Mol. Genet., 2007, vol. 16, no. 20, pp. 2394—2410. https://doi.org/10.1093/hmg/ddm167

    Article  CAS  PubMed  Google Scholar 

  21. Liu, C.M., Liu, Y.L., Fann, C.S., et al., Association evidence of schizophrenia with distal genomic region of NOTCH4 in Taiwanese families, Genes Brain Behav., 2007, vol. 6, no. 6, pp. 497—502. https://doi.org/10.1111/j.1601-183X.2006.00276.x

    Article  CAS  PubMed  Google Scholar 

  22. Xu, Y., Baker, D., Quan, T., et al., Receptor type protein tyrosine phosphatase-kappa mediates cross-talk between transforming growth factor-beta and epidermal growth factor receptor signaling pathways in human keratinocytes, Mol. Biol. Cell, 2010, vol. 21, no. 1, pp. 29—35. https://doi.org/10.1091/mbc.E09-08-0710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chassaing, N., Ragge, N., Plaisancié, J., et al., Confirmation of TENM3 involvement in autosomal recessive colobomatous microphthalmia, Am. J. Med. Genet., Part A, 2016, vol. 170, no. 7, pp. 1895—1898, https://doi.org/10.1002/ajmg.a.37667

    Article  CAS  Google Scholar 

  24. Pinnell, N., Yan, R., Cho, H.J., et al., The PIAS-like coactivator Zmiz1 is a direct and selective cofactor of Notch1 in T cell development and leukemia, Immunity, 2015, vol. 43, no. 5, pp. 870—883. https://doi.org/10.1016/j.immuni.2015.10.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sharma, M., Li, X., Wang, Y., et al., hZimp10 is an androgen receptor co-activator and forms a complex with SUMO-1 at replication foci, EMBO J., 2003, vol. 22, pp. 6101—6114. https://doi.org/10.1093/emboj/cdg585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang, Y., Park, E., Kim, C.S., and Paik, J.H., ZNF365 promotes stalled replication forks recovery to maintain genome stability, Cell Cycle, 2013, vol. 12, no. 17, pp. 2817—2828. https://doi.org/10.4161/cc.25882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Vokhmyanina, N.V. and Vavilova, T.V., Gluten enteropathy from the standpoint of genome-wide association analysis (GWAS), Vestn. S.-Peterb. Univ., Ser. 11: Med., 2014, no. 3, pp. 38—49.

  28. Rabson, A., Roitt, A., and Delves, P.J., Really Essential Medical Immunology, Oxford: Wiley—Blackwell, 2004, 2nd ed.

    Google Scholar 

  29. Innate immunity and celiac disease, Frontiers in Celiac Disease: Pediatr. Adolesc. Med., Fasano, A., Troncone, R., and Branski, D., Eds., Basel: Karger, 2008, vol. 12, pp. 66—81.

    Google Scholar 

  30. Netea Mihai, G., Wijmenga, C., and O’Neill, L.A., Genetic variation in Toll-like receptors and disease susceptibility, Nat. Immunol., 2012, vol. 13, pp. 535—542. https://doi.org/10.1038/ni.2284

    Article  CAS  PubMed  Google Scholar 

  31. Miller, B.J. and Goldsmith, D.R., Towards an immunophenotype of schizophrenia: progress, potential mechanisms, and future directions, Neuropsychopharmacology, 2017, vol. 42, no. 1, pp. 299—317. https://doi.org/10.1038/npp.2016.211

    Article  CAS  PubMed  Google Scholar 

  32. Khandaker, G.M., Cousins, L., Deakin, J., et al., Inflammation and immunity in schizophrenia: implications for pathophysiology and treatment, Lancet Psychiatry, 2015, vol. 2, no. 3, pp. 258—270. https://doi.org/10.1016/S2215-0366(14)00122-9

    Article  PubMed  PubMed Central  Google Scholar 

  33. Citri, A. and Yarden, Y., EGF-ERBB signalling: towards the systems level, Nat. Rev. Mol. Cell. Biol., 2006, vol. 7, no. 7, pp. 505—516. https://doi.org/10.1038/nrm1962

    Article  CAS  PubMed  Google Scholar 

  34. Yarden, Y. and Sliwkowski, M.X., Untangling the ErbB signalling network, Nat. Rev. Mol. Cell. Biol., 2001, vol. 2, no. 2, pp. 127—137. https://doi.org/10.1038/35052073

    Article  CAS  PubMed  Google Scholar 

  35. Warren, C.M. and Landgraf, R., Signaling through ERBB receptors: multiple layers of diversity and control, Cell Signal., 2006, vol. 18, no. 7, pp. 923—933. https://doi.org/10.1016/j.cellsig.2005.12.007

    Article  CAS  PubMed  Google Scholar 

  36. Cox, A.D. and Der, C.J., Ras history: the saga continues, Small GTPases, 2010, vol. 1, no. 1, pp. 2—27. https://doi.org/10.4161/sgtp.1.1.12178

    Article  PubMed  PubMed Central  Google Scholar 

  37. Cox, A.D. and Der, C.J., Ras family signaling: therapeutic targeting, Cancer Biol. Ther., 2002, vol. 1, no. 6, pp. 599—606. https://doi.org/10.4161/cbt.306

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The present study had no financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Grechishnikova.

Ethics declarations

The authors declare no conflict of interest.

The present study contains no data on research involving animals or humans as the objects of the study.

Additional information

Translated by A. Kazantseva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chasovskikh, N.Y., Grechishnikova, A.Y. Functional Annotation of Genes of Predisposition to Schizophrenia and Celiac Disease. Russ J Genet 56, 1246–1251 (2020). https://doi.org/10.1134/S1022795420100038

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795420100038

Keywords:

Navigation