Karmin, M., Saag, L., Vicente, M., et al., A recent bottleneck of Y chromosome diversity coincides with a global change in culture, Genome Res., 2015, pp. 459—466. https://doi.org/10.1101/gr.186684.114
Ilumäe, A.-M., Reidla, M., Chukhryaeva, M., et al., Human Y-chromosome haplogroup N: a non-trivial time-resolved phylogeography that cuts across language families, Am. J. Hum. Genet., 2016, vol. 99, pp. 163—173. https://doi.org/10.1016/j.ajhg.2016.05.025
CAS
Article
PubMed
PubMed Central
Google Scholar
Hallast, P., Batini, C., Zadik, D., et al., The Y-chromosome tree bursts into leaf: 13 000 high-confidence SNPs covering the majority of known clades, Mol. Biol. Evol., 2015, vol. 32, no. 3, pp. 661—673. https://doi.org/10.1093/molbev/msu327
CAS
Article
PubMed
Google Scholar
Jobling, M.A. and Tyler-Smith, C., The human Y‑chromosome: an evolutionary marker comes of age, Nat. Rev. Genet., 2003, vol. 4, pp. 598—612. https://doi.org/10.1038/nrg1124
CAS
Article
PubMed
Google Scholar
Jobling, M.A. and Gill, P., Encoded evidence: DNA in forensic analysis, Nat. Rev., 2004, vol. 5, no. 10, pp. 739—751. https://doi.org/10.1038/nrg1455
Article
Google Scholar
Kayser, M., Kittler, R., Erler, A., et al., A comprehensive survey of human Y-chromosomal microsatellites, Am. J. Hum. Genet., 2004, vol. 74, pp. 1183—1197. https://doi.org/10.1086/421531
CAS
Article
PubMed
PubMed Central
Google Scholar
Zhivotovsky, L.A., Underhill, P.A., Cinnioglu, C., et al., On the effective mutation rate at Y-chromosome STRs with application to human population divergence time, Am. J. Hum. Genet., 2004, vol. 74, pp. 50—61. https://doi.org/10.1086/380911
CAS
Article
PubMed
Google Scholar
Dupanloup, I., Pereira, L., Bertorelle, G., et al., A recent shift from polygeny to monogamy in humans is suggested by the analysis of worldwide Y-chromosome diversity, Mol. Evol., 2003, vol. 57, pp. 85—97.https://doi.org/10.1007/s00239-003-2458-x
CAS
Article
Google Scholar
Rizzo, J.M. and Buck, M.J., Key principles and clinical applications of “next-generation” DNA sequencing, Cancer Prev. Res., 2012, vol. 5, no. 7, pp. 887—900. https://doi.org/10.1158/1940-6207.CAPR-11-0432
CAS
Article
Google Scholar
Grandell, I., Samara, R., and Tillmar, A.O., A SNP panel for identity and kinship testing using massive parallel sequencing, Int. J. Legal Med., 2016, vol. 130, no. 4, pp. 905—914. https://doi.org/10.1007/s00414-016-1341-4
Article
PubMed
Google Scholar
Amorim, A. and Pinto, N., Big data in forensic genetics, Forensic Sci. Int. Genet., 2018, no. 37, pp. 102—105. https://doi.org/10.1016/j.fsigen.2018.08.001
Kivisild, T., The study of human Y chromosome variation through ancient DNA, Hum. Genet., 2017, vol. 136, pp. 529—546. https://doi.org/10.1007/s00439-017-1773-z
CAS
Article
PubMed
PubMed Central
Google Scholar
Khar’kov, V.N. and Stepanov, V.A., Y chromosome markers in the DNA identification: achievements, problems and prospects, Molekulyarnaya diagnostika2017 (Molecular Diagnostics 2017) (Proc. IXth All-Russ. Theor. Pract. Conf. Int. Participation), 2017, vol. 1, pp. 423—424.
Boonyarit, H., Mahasirimongkol, S., Chavalvechakul, N., et al., Development of a SNP set for human identification: a set with high powers of discrimination which yields high genetic information from naturally degraded DNA samples in the Thai population, Forensic Sci. Int. Genet., 2014, vol. 11, pp. 166—173. https://doi.org/10.1016/j.fsigen.2014.03.010
CAS
Article
PubMed
Google Scholar
Ge, J., Budowle, B., Planz, J.V., et al., Haplotype block: a new type of forensic DNA markers, Int. J. Legal Med., 2010, vol. 124, no. 5, pp. 353—361. https://doi.org/10.1007/s00414-009-0400-5
Article
PubMed
Google Scholar
Da Costa Francez, PA., Rodrigues, E.M., Velasco, A.M., et al., Insertion—deletion polymorphisms-utilization on forensic analysis, Int. J. Legal Med., 2012, vol. 126, no. 4, pp. 491—496. https://doi.org/10.1007/s00414-011-0588-z
Article
PubMed
Google Scholar
Dib, C., Faure, S., Fizames, C., et al., A comprehensive genetic map of the human genome based on 5264 microsatellites, Nature, 1996, vol. 380, pp. 152—154. https://doi.org/10.1038/380152a0
CAS
Article
PubMed
Google Scholar
Edwards, A., Civitello, A., Hammond, H.A., et al., DNA typing and genetic mapping with trimeric and tetrameric tandem repeats, Am. J. Hum. Genet., 1991, vol. 49, no. 4, pp. 746—756.
CAS
PubMed
PubMed Central
Google Scholar
Roewer, L. and Epplen, J.T., Rapid and sensitive typing of forensic stains by PCR amplification of polymorphic simple repeat sequences in case work, Forensic Sci. Int., 1992, vol. 53, no. 2, pp. 163—171. https://doi.org/10.1016/0379-0738(92)90193-z
CAS
Article
PubMed
Google Scholar
Stepanov, V.A., Balanovskii, O.P., Mel’nikov, A.V., et al., Characteristics of populations of the Russian Federation over the panel of fifteen loci used for DNA identification and in forensic medical examination, Acta Nat., 2011, vol. 3, no. 2, pp. 56—67. https://doi.org/10.32607/20758251-2011-3-2-56-67
Article
Google Scholar
Ballantyne, K.N., Keerl, V., Wollstein, A., et al., A new future of forensic Y-chromosome analysis: rapidly mutating Y-STRs for differentiating male relatives and paternal lineages, Forensic Sci. Int. Genet., 2012, vol. 6, pp. 208—218. https://doi.org/10.1016/j.fsigen.2011.04.017
CAS
Article
PubMed
Google Scholar
Butler, J.M., Coble, M.D., and Vallone, P.M., STRs vs SNP: thoughts on the future of forensic DNA testing, Forensic. Sci. Med. Pathol., 2007, vol. 3, no. 3, pp. 200—205. https://doi.org/10.1007/s12024-007-0018-1
CAS
Article
PubMed
Google Scholar
Chakraborty, R., Stivers, D.N., Su, B., et al., The utility of short tandem repeat loci beyond human identification: implications for development of new DNA typing systems, Electrophoresis, 1999, vol. 20, no. 8, pp. 682—1696. https://doi.org/10.1002/(SICI)1522-2683(19990101)20:8<1682::AID-ELPS1682>3.0.CO;2-Z
Article
Google Scholar
Gill, P., An assessment of the utility of single nucleotide polymorphisms (SNPs) for forensic purposes, Int. J. Legal Med., vol. 114, nos. 4—5, pp. 204—210. https://doi.org/10.1007/s004149900117
Gill, P., Werrett, D.J., Budowle, B., et al., An assessment of whether SNPs will replace STRs in national DNA databases-joint considerations of the DNA working group of the European Network of Forensic Science Institutes (ENFSI) and the Scientific Working Group on DNA Analysis Methods (SWGDAM), Sci. Justice, 2004, vol. 44, no. 1, pp. 51—53.
Article
Google Scholar
Budowle, B., SNP typing strategies, Forensic Sci. Int., 2004, vol. 146, suppl., pp. S139—S142.
CAS
Article
Google Scholar
Amorim, A. and Pereira, L., Pros and cons in the use of SNPs in forensic kinship investigation: a comparative analysis with STRs, Forensic Sci. Int., 2005, vol. 150, no. 1, pp. 17—21. https://doi.org/10.1016/j.forsciint.2004.06.018
CAS
Article
PubMed
Google Scholar
Sobrino, B., Bri, M., and Carracedo, A., SNPs in forensic genetics: a review on SNP typing methodologies, Forensic Sci. Int., 2005, vol. 154, pp. 181—194. https://doi.org/10.1016/j.forsciint.2004.10.020
CAS
Article
PubMed
Google Scholar
Petkovski, E., Keyser-Tracqui, C., Hienne, R., et al., SNPs and MALDI-TOF MS: tools for DNA typing in forensic paternity testing and anthropology, J. Forensic Sci., 2005, vol. 50, no. 3, pp. 535—541.
CAS
Article
Google Scholar
Johansen, P., Andersen, J.D., and Morling, C., Evaluation of the iPLEX® Sample ID Plus Panel designed for the Sequenom Mass ARRAY® system, Forensic Sci. Int. Genet., 2013, vol. 7, no. 5, pp. 482—487. https://doi.org/10.1016/j.fsigen.2013.04.009
CAS
Article
PubMed
Google Scholar
Dixon, L., Dobbins, A.E., Pulker, H.K., et al., Analysis of artificially degraded DNA using STRs and SNPs-results of a collaborative European (EDNAP) exercise, Forensic Sci. Int., 2006, vol. 164, no. 1, pp. 33—44. https://doi.org/10.1016/j.forsciint.2005.11.011
CAS
Article
PubMed
Google Scholar
Sanchez, J.J., Phillips, C., Balogh, C., et al., A multiplex assay with 52 single nucleotide polymorphisms for human identification, Electrophoresis, 2006, vol. 27, no. 9, pp. 1713—1724. https://doi.org/10.1002/elps.200500671
CAS
Article
PubMed
Google Scholar
Pakstis, A.J., Speed, W.C., Fang, R., et al., SNPs for a universal individual identification panel, Hum. Genet., 2010, vol. 127, no. 3, pp. 315—324. https://doi.org/10.1007/s00439-009-0771-1
Article
PubMed
Google Scholar
Mizuno, N.A., Kitayama, T., Fujii, K., et al., Forensic method for the simultaneous analysis of biallelic markers identifying Y chromosome haplogroups inferred as having originated in Asia and the Japanese archipelago, Forensic Sci. Int. Genet., 2010, vol. 4, no. 2, pp. 73—79. https://doi.org/10.1016/j.legalmed.2009.12.004
CAS
Article
PubMed
Google Scholar