Y Chromosome as a Tool for DNA Identification and Determination of Ethnoterritorial Origin

Abstract

Genetic diversity of a large number of populations is analyzed using various Y-chromosome markers. Genotyping of a wide range of novel highly informative SNP and YSTR markers shows that most of the Y-chromosome haplogroups can be divided not only into ethnically specific lineages but also into narrower sublineages and clusters of haplotypes. A significant extent of population and interethnic genetic differentiation is revealed. Most ethnic gene pools are characterized by the predominance or even complete dominance of specific SNPs across all major haplogroups, that is highly promising for the application in ethnic identification of biological samples of males.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.

REFERENCES

  1. 1

    Karmin, M., Saag, L., Vicente, M., et al., A recent bottleneck of Y chromosome diversity coincides with a global change in culture, Genome Res., 2015, pp. 459—466. https://doi.org/10.1101/gr.186684.114

  2. 2

    Ilumäe, A.-M., Reidla, M., Chukhryaeva, M., et al., Human Y-chromosome haplogroup N: a non-trivial time-resolved phylogeography that cuts across language families, Am. J. Hum. Genet., 2016, vol. 99, pp. 163—173. https://doi.org/10.1016/j.ajhg.2016.05.025

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. 3

    Hallast, P., Batini, C., Zadik, D., et al., The Y-chromosome tree bursts into leaf: 13 000 high-confidence SNPs covering the majority of known clades, Mol. Biol. Evol., 2015, vol. 32, no. 3, pp. 661—673. https://doi.org/10.1093/molbev/msu327

    CAS  Article  PubMed  Google Scholar 

  4. 4

    Jobling, M.A. and Tyler-Smith, C., The human Y‑chromosome: an evolutionary marker comes of age, Nat. Rev. Genet., 2003, vol. 4, pp. 598—612. https://doi.org/10.1038/nrg1124

    CAS  Article  PubMed  Google Scholar 

  5. 5

    Jobling, M.A. and Gill, P., Encoded evidence: DNA in forensic analysis, Nat. Rev., 2004, vol. 5, no. 10, pp. 739—751. https://doi.org/10.1038/nrg1455

    Article  Google Scholar 

  6. 6

    Kayser, M., Kittler, R., Erler, A., et al., A comprehensive survey of human Y-chromosomal microsatellites, Am. J. Hum. Genet., 2004, vol. 74, pp. 1183—1197. https://doi.org/10.1086/421531

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. 7

    Zhivotovsky, L.A., Underhill, P.A., Cinnioglu, C., et al., On the effective mutation rate at Y-chromosome STRs with application to human population divergence time, Am. J. Hum. Genet., 2004, vol. 74, pp. 50—61. https://doi.org/10.1086/380911

    CAS  Article  PubMed  Google Scholar 

  8. 8

    Dupanloup, I., Pereira, L., Bertorelle, G., et al., A recent shift from polygeny to monogamy in humans is suggested by the analysis of worldwide Y-chromosome diversity, Mol. Evol., 2003, vol. 57, pp. 85—97.https://doi.org/10.1007/s00239-003-2458-x

    CAS  Article  Google Scholar 

  9. 9

    Rizzo, J.M. and Buck, M.J., Key principles and clinical applications of “next-generation” DNA sequencing, Cancer Prev. Res., 2012, vol. 5, no. 7, pp. 887—900. https://doi.org/10.1158/1940-6207.CAPR-11-0432

    CAS  Article  Google Scholar 

  10. 10

    Grandell, I., Samara, R., and Tillmar, A.O., A SNP panel for identity and kinship testing using massive parallel sequencing, Int. J. Legal Med., 2016, vol. 130, no. 4, pp. 905—914. https://doi.org/10.1007/s00414-016-1341-4

    Article  PubMed  Google Scholar 

  11. 11

    Amorim, A. and Pinto, N., Big data in forensic genetics, Forensic Sci. Int. Genet., 2018, no. 37, pp. 102—105. https://doi.org/10.1016/j.fsigen.2018.08.001

  12. 12

    Kivisild, T., The study of human Y chromosome variation through ancient DNA, Hum. Genet., 2017, vol. 136, pp. 529—546. https://doi.org/10.1007/s00439-017-1773-z

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. 13

    Khar’kov, V.N. and Stepanov, V.A., Y chromosome markers in the DNA identification: achievements, problems and prospects, Molekulyarnaya diagnostika2017 (Molecular Diagnostics 2017) (Proc. IXth All-Russ. Theor. Pract. Conf. Int. Participation), 2017, vol. 1, pp. 423—424.

  14. 14

    Boonyarit, H., Mahasirimongkol, S., Chavalvechakul, N., et al., Development of a SNP set for human identification: a set with high powers of discrimination which yields high genetic information from naturally degraded DNA samples in the Thai population, Forensic Sci. Int. Genet., 2014, vol. 11, pp. 166—173. https://doi.org/10.1016/j.fsigen.2014.03.010

    CAS  Article  PubMed  Google Scholar 

  15. 15

    Ge, J., Budowle, B., Planz, J.V., et al., Haplotype block: a new type of forensic DNA markers, Int. J. Legal Med., 2010, vol. 124, no. 5, pp. 353—361. https://doi.org/10.1007/s00414-009-0400-5

    Article  PubMed  Google Scholar 

  16. 16

    Da Costa Francez, PA., Rodrigues, E.M., Velasco, A.M., et al., Insertion—deletion polymorphisms-utilization on forensic analysis, Int. J. Legal Med., 2012, vol. 126, no. 4, pp. 491—496. https://doi.org/10.1007/s00414-011-0588-z

    Article  PubMed  Google Scholar 

  17. 17

    Dib, C., Faure, S., Fizames, C., et al., A comprehensive genetic map of the human genome based on 5264 microsatellites, Nature, 1996, vol. 380, pp. 152—154. https://doi.org/10.1038/380152a0

    CAS  Article  PubMed  Google Scholar 

  18. 18

    Edwards, A., Civitello, A., Hammond, H.A., et al., DNA typing and genetic mapping with trimeric and tetrameric tandem repeats, Am. J. Hum. Genet., 1991, vol. 49, no. 4, pp. 746—756.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19

    Roewer, L. and Epplen, J.T., Rapid and sensitive typing of forensic stains by PCR amplification of polymorphic simple repeat sequences in case work, Forensic Sci. Int., 1992, vol. 53, no. 2, pp. 163—171. https://doi.org/10.1016/0379-0738(92)90193-z

    CAS  Article  PubMed  Google Scholar 

  20. 20

    Stepanov, V.A., Balanovskii, O.P., Mel’nikov, A.V., et al., Characteristics of populations of the Russian Federation over the panel of fifteen loci used for DNA identification and in forensic medical examination, Acta Nat., 2011, vol. 3, no. 2, pp. 56—67. https://doi.org/10.32607/20758251-2011-3-2-56-67

    Article  Google Scholar 

  21. 21

    Ballantyne, K.N., Keerl, V., Wollstein, A., et al., A new future of forensic Y-chromosome analysis: rapidly mutating Y-STRs for differentiating male relatives and paternal lineages, Forensic Sci. Int. Genet., 2012, vol. 6, pp. 208—218. https://doi.org/10.1016/j.fsigen.2011.04.017

    CAS  Article  PubMed  Google Scholar 

  22. 22

    Butler, J.M., Coble, M.D., and Vallone, P.M., STRs vs SNP: thoughts on the future of forensic DNA testing, Forensic. Sci. Med. Pathol., 2007, vol. 3, no. 3, pp. 200—205. https://doi.org/10.1007/s12024-007-0018-1

    CAS  Article  PubMed  Google Scholar 

  23. 23

    Chakraborty, R., Stivers, D.N., Su, B., et al., The utility of short tandem repeat loci beyond human identification: implications for development of new DNA typing systems, Electrophoresis, 1999, vol. 20, no. 8, pp. 682—1696. https://doi.org/10.1002/(SICI)1522-2683(19990101)20:8<1682::AID-ELPS1682>3.0.CO;2-Z

    Article  Google Scholar 

  24. 24

    Gill, P., An assessment of the utility of single nucleotide polymorphisms (SNPs) for forensic purposes, Int. J. Legal Med., vol. 114, nos. 4—5, pp. 204—210. https://doi.org/10.1007/s004149900117

  25. 25

    Gill, P., Werrett, D.J., Budowle, B., et al., An assessment of whether SNPs will replace STRs in national DNA databases-joint considerations of the DNA working group of the European Network of Forensic Science Institutes (ENFSI) and the Scientific Working Group on DNA Analysis Methods (SWGDAM), Sci. Justice, 2004, vol. 44, no. 1, pp. 51—53.

    Article  Google Scholar 

  26. 26

    Budowle, B., SNP typing strategies, Forensic Sci. Int., 2004, vol. 146, suppl., pp. S139—S142.

    CAS  Article  Google Scholar 

  27. 27

    Amorim, A. and Pereira, L., Pros and cons in the use of SNPs in forensic kinship investigation: a comparative analysis with STRs, Forensic Sci. Int., 2005, vol. 150, no. 1, pp. 17—21. https://doi.org/10.1016/j.forsciint.2004.06.018

    CAS  Article  PubMed  Google Scholar 

  28. 28

    Sobrino, B., Bri, M., and Carracedo, A., SNPs in forensic genetics: a review on SNP typing methodologies, Forensic Sci. Int., 2005, vol. 154, pp. 181—194. https://doi.org/10.1016/j.forsciint.2004.10.020

    CAS  Article  PubMed  Google Scholar 

  29. 29

    Petkovski, E., Keyser-Tracqui, C., Hienne, R., et al., SNPs and MALDI-TOF MS: tools for DNA typing in forensic paternity testing and anthropology, J. Forensic Sci., 2005, vol. 50, no. 3, pp. 535—541.

    CAS  Article  Google Scholar 

  30. 30

    Johansen, P., Andersen, J.D., and Morling, C., Evaluation of the iPLEX® Sample ID Plus Panel designed for the Sequenom Mass ARRAY® system, Forensic Sci. Int. Genet., 2013, vol. 7, no. 5, pp. 482—487. https://doi.org/10.1016/j.fsigen.2013.04.009

    CAS  Article  PubMed  Google Scholar 

  31. 31

    Dixon, L., Dobbins, A.E., Pulker, H.K., et al., Analysis of artificially degraded DNA using STRs and SNPs-results of a collaborative European (EDNAP) exercise, Forensic Sci. Int., 2006, vol. 164, no. 1, pp. 33—44. https://doi.org/10.1016/j.forsciint.2005.11.011

    CAS  Article  PubMed  Google Scholar 

  32. 32

    Sanchez, J.J., Phillips, C., Balogh, C., et al., A multiplex assay with 52 single nucleotide polymorphisms for human identification, Electrophoresis, 2006, vol. 27, no. 9, pp. 1713—1724. https://doi.org/10.1002/elps.200500671

    CAS  Article  PubMed  Google Scholar 

  33. 33

    Pakstis, A.J., Speed, W.C., Fang, R., et al., SNPs for a universal individual identification panel, Hum. Genet., 2010, vol. 127, no. 3, pp. 315—324. https://doi.org/10.1007/s00439-009-0771-1

    Article  PubMed  Google Scholar 

  34. 34

    Mizuno, N.A., Kitayama, T., Fujii, K., et al., Forensic method for the simultaneous analysis of biallelic markers identifying Y chromosome haplogroups inferred as having originated in Asia and the Japanese archipelago, Forensic Sci. Int. Genet., 2010, vol. 4, no. 2, pp. 73—79. https://doi.org/10.1016/j.legalmed.2009.12.004

    CAS  Article  PubMed  Google Scholar 

Download references

Funding

This work was carried out as part of the Union State Scientific and Technical Program “Development of Innovative Genogeographic and Genomic Technologies for Personal Identification and Identification of Individual Characteristics Based on the Study of Gene Pools of the Union State Regions” (“DNA Identification”), state contract no. 011-17 of September 26, 2017, and also supported by the Russian Foundation for Basic Research (grant no. 18-29-13045) “Human Population Genomics and Transcriptomics: Search for the Signals of Non-Neutral Evolution.”

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. N. Kharkov.

Ethics declarations

Conflict of interest. The authors declare that they have no conflict of interest.

Statement of compliance with standards of research involving humans as subjects. All procedures performed in this study involving people comply with the ethical standards of the institutional and/or national committee for research ethics and the 1964 Helsinki Declaration and its subsequent changes or comparable ethical standards. Informed consent was obtained from each of the participants in the study.

Additional information

Translated by K. Lazarev

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kharkov, V.N., Zarubin, A.A., Vagaitseva, K.V. et al. Y Chromosome as a Tool for DNA Identification and Determination of Ethnoterritorial Origin. Russ J Genet 56, 1109–1117 (2020). https://doi.org/10.1134/S1022795420090112

Download citation

Keywords:

  • Y chromosome
  • DNA identification
  • genetic diversity
  • runs of homozygosity
  • human populations