Skip to main content
Log in

The Ability of Taxonomic Identification of Bifidobacteria Based on the Variable Regions of 16S rRNA Gene

  • GENETICS OF MICROORGANISMS
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Bifidobacteria are considered key commensals of the human intestinal tract; they dominate the community in the earliest stages of life and are the first to respond to stress factors. The metasequencing of the V3–V4 16S rRNA fragments made it possible to identify 12 phylotypes of bifidobacteria in the gut microbiome of adolescents, which accounted for from 0.0001 to 0.9% of the total microbiome. A phylogenetic analysis of the obtained phylotypes was conducted; such species as B. angulatum, B. bifidum, B. longum, and B. animalis, as well as subspecies B. animalis subsp. lactis, were identified. The species of bifidobacteria excluded from identification by the V3–V4 variable regions were identified. The phylogenetic analysis of different variable regions and their combinations showed that a tree topology based on the V2 fragment is the most similar to a tree topology based on the complete gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Turroni, F., Milani, C., Van Sinderen, D., and Ventura, M., Bifidobacteria: ecology and coevolution with the host, in The Bifidobacteria and Related Organisms: Biology, Taxonomy, Applications, New York: Acad. Press, 2018, pp. 213—220. https://doi.org/10.1016/B978-0-12-805060-6.00012-0

    Book  Google Scholar 

  2. Ventura, M., Canchaya, C., Tauch, A., et al., Genomics of actinobacteria: tracing the evolutionary history of an ancient phylum, Microbiol. Mol. Biol. Rev., 2007, vol. 71, no. 3, pp. 495—548. https://doi.org/10.1128/MMBR.00005-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Turroni, F., van Sinderen, D., and Ventura, M., Genomics and ecological overview of the genus Bifidobacterium,Int. J. Food Microbiol., 2011, vol. 149, no. 1, pp. 37—44. https://doi.org/10.1016/j.ijfoodmicro.2010.12.010

    Article  CAS  PubMed  Google Scholar 

  4. Turroni, F., Peano, C., Pass, D.A., et al., Diversity of bifidobacteria within the infant gut microbiota, PLoS One, 2012, vol. 7, no. 5. e36957. https://doi.org/10.1371/journal.pone.0036957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rakova, E.B., Nemchenko, U.M., Popkova, S.M., et al., Species characteristics of bifidobacteria in the intestinal biotope of children with functional dyspepsia, Klin. Lab. Diagn., 2015, vol. 60, no. 10, pp. 50—53.

    CAS  PubMed  Google Scholar 

  6. Nemchenko, U.M., Savel’kaeva, M.V., Rakova, E.B., et al., Microecological characteristics of intestinal biocenosis in children with functional disorders of the gastrointestinal tract, Klin. Lab. Diagn., 2016, vol. 61, no. 6, pp. 368—371.

    Google Scholar 

  7. Grigorova, E.V., Rakova, E.B., Savel’kaeva, M.V., et al., Disadaptive rearrangement of the large intestine microbiocenosis in 3—6 months old children under the influence of bacteria of the genus Klebsiella,Zh. Infektol., 2017, vol. 9, no. 1S, p. 58.

    Google Scholar 

  8. Grigorova, E.V., Ivanova, E.I., Nemchenko, U.M., and Savel’kaeva, M.V., Detection of pathogenicity factors in strains of Klebsiella spp. as the main etiological agent in the formation of functional gastrointestinal disorders in infants, Zh. Infektol., 2018, vol. 10, no. S4-1, p. 70.

  9. Rakova, E.B., Popkova, S.M., Nemchenko, U.M., et al., Specific characteristics of microbiocenoses in children living under conditions of technogenic pressure, Gig. Sanit., 2011, no. 4, pp. 22—26.

  10. Nemchenko, U.M., Rakova, E.B., Popkova, S.M., et al., The structure of intestinal dysbiosis in preschool children over a long-term observation period, Klin. Lab. Diagn., 2015, vol. 60, no. 2, pp. 63—65.

    CAS  PubMed  Google Scholar 

  11. Nemchenko, U.M., Microecological status of intestinal biocenosis and species architectonics of bifidobacteria in children, Extended Abstract of Cand. Sci. Dissertation, Nauchnyi Tsentr Problem Zdorov’ya Sem’i i Reproduktsii Cheloveka Sibirskogo Otdeleiya Rossiiskoi Akademii Meditsinskikh Nauk, Irkutsk, 2014, p. 20.

  12. Lagier, J.-C., Million, M., Hugon, P., et al., Human gut microbiota: repertoire and variations, Front. Cell. Infect. Microbiol., 2012, vol. 2, p. 136. https://doi.org/10.3389/fcimb.2012.00136

    Article  PubMed  PubMed Central  Google Scholar 

  13. Rinke, C., Schwientek, P., Sczyrba, A., et al., Insights into the phylogeny and coding potential of microbial dark matter, Nature, 2013, vol. 499, no. 7459, pp. 431—437. https://doi.org/10.1038/nature12352

    Article  CAS  PubMed  Google Scholar 

  14. Yang, B., Wang, Y., and Qian, P.Y., Sensitivity and correlation of hypervariable regions in 16S rRNA genes in phylogenetic analysis, BMC Bioinf., 2016, vol. 17, no. 135. PMC4802574. https://doi.org/10.1186/s12859-016-0992-y

  15. Billera, L.J., Holmes, S.P., and Vogtmann, K., Geometry of the space of phylogenetic trees, Adv. Appl. Math., 2001, vol. 27, no. 4, pp. 733—767. https://doi.org/10.1006/aama.2001.0759

    Article  Google Scholar 

  16. Owen, M. and Provan, J.S., A fast algorithm for computing geodesic distances in tree space, IEEE/ACM Trans. Comput. Biol. Bioinf., 2011, vol. 8, no. 1, pp. 2—13. https://doi.org/10.1109/TCBB.2010.3

    Article  Google Scholar 

  17. Belkova, N.L., Nemchenko, U.M., Pogodina, A.V., et al., Composition and structure of gut microbiome in adolescents with obesity and different breastfeeding duration, Bull. Exp. Biol. Med., 2019, vol. 167, no. 6, pp. 759—762. https://doi.org/10.1007/s10517-019-04617-7

    Article  CAS  PubMed  Google Scholar 

  18. Bolyen, E., Rideout, J.R., Dillon, M.R., et al., Reproducible, interactive, scalable, and extensible microbiome data science using QIIME 2, Nat. Biotechnol., 2019, vol. 37, no. 8, pp. 852—857. https://doi.org/10.1038/s41587-019-0209-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Callahan, B.J., McMurdie, P.J., Rosen, M.J., et al., DADA2: high-resolution sample inference from Illumina amplicon data, Nat. Methods, 2016, vol. 13, no. 7, p. 581. https://doi.org/10.1038/nmeth.3869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Raaijmakers, J.G., Statistical analysis of the Michaelis—Menten equation, Biometrics, 1987, vol. 43, no. 4, pp. 793—803. https://doi.org/10.2307/2531533

    Article  CAS  PubMed  Google Scholar 

  21. Thompson, J.D., CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice, Nucleic Acids Res., 1994, vol. 22, no. 22, pp. 4673—4680. https://doi.org/10.1093/nar/22.22.4673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hillis, D.M. and Bull, J.J., An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis, Syst. Biol., 1993, vol. 42, no. 2, pp. 182—192. https://doi.org/10.1093/sysbio/42.2.182

    Article  Google Scholar 

  23. Sun, Z., Zhang, W., Guo, C., et al., Comparative genomic analysis of 45 type strains of the genus Bifidobacterium: a snapshot of its genetic diversity and evolution, PLoS One, 2015, vol. 10, no. 2. e0117912. https://doi.org/10.1371/journal.pone.0117912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Alcon-Giner, C., Caim, S., Mitra, S., et al., Optimisation of 16S rRNA gut microbiota profiling of extremely low birth weight infants, BMC Genomics, 2017, vol. 18, no. 1, p. 841. https://doi.org/10.1186/s12864-017-4229-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Walker, A.W., Ince, J., Duncan, S.H., et al., Dominant and diet-responsive groups of bacteria within the human colonic microbiota, ISME J., 2011, vol. 5, no. 2, pp. 220—230. https://doi.org/10.1038/ismej.2010.118

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. S. Klimenko.

Ethics declarations

Statement of compliance with standards of research involving humans as subjects. All procedures performed in a study involving people comply with the ethical standards of the institutional and/or national committee for research ethics and the 1964 Helsinki Declaration and its subsequent changes or comparable ethical standards.

Informed voluntary consent was obtained from each of the participants.

Conflict of interest. The authors declare that they have no conflict of interest.

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klimenko, E.S., Pogodina, A.V., Rychkova, L.V. et al. The Ability of Taxonomic Identification of Bifidobacteria Based on the Variable Regions of 16S rRNA Gene. Russ J Genet 56, 926–934 (2020). https://doi.org/10.1134/S1022795420080074

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795420080074

Keywords:

Navigation