Skip to main content
Log in

Comparison of Ancient Haplotypes with Modern Island Reed Vole Populations

  • SHORT COMMUNICATIONS
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Ancient (Medvezhyi Klyk Cave, Primorsky krai, Russia) and modern (island and coastal populations of Peter the Great Bay) mtDNA haplotypes of the reed vole were compared. Both ancient and modern vole haplotypes were divided into two groups. The first group included three ancient haplotypes dated >30 000 years BP and modern vole haplotypes from the islands of the Rimsky-Korsakov Archipelago. The second group involved ancient haplotypes dated 2000–5000 years BP and modern vole haplotypes of young island populations and mainland populations. Two widely distributed haplotypes H1 and H7 were found in the second group, the latter identical to one of the ancient haplotypes. The voles of Matveyev and Bolshoy Pelis islands retained the most ancient haplotypes. The main haplogroup changed on the coastal territory after the isolation of islands of the Rimsky-Korsakov Archipelago.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Myers, N., Threatened biotas: ‘hotspots’ in tropical forests, Environmentalist, 1988, vol. 8, no. 3, pp. 187—208. https://doi.org/10.1007/BF02240252

    Article  CAS  PubMed  Google Scholar 

  2. Korotkii, A.M., Grebennikova, T.A, and Pushkar’, V.S., Klimaticheskie smeny na territorii yuga Dal’nego Vostoka v pozdnem kainozoe (miotsen-pleistotsen) (Climatic Changes on the Territory of the South of the Far East in the Late Cenozoic (Miocene—Pleistocene)), Vladivostok: Dal’nauka, 1996.

  3. Sheremet’ev, I.S., Formation of terrestrial theriofauna on the Islands of Peter the Great Bay, Sea of Japan, Vestn. Dal’nevost. Otd. Ross. Akad. Nauk, 2001, no. 4, pp. 11—22.

  4. Chugunov, Yu.D. and Katin, I.O., The number and distribution of rodent among the Biotopes on the Islands of the Far East State Marine Reserve, in Zhivotnyi mir Dal’nevostochnogo morskogo zapovednika (Animals of the Far East Marine Reserve), Vladivostok: Dal’nevost. Nauch. Tsentr Akad. Nauk SSSR, 1984, pp. 107—121.

  5. Katin, I.O., Population dynamics of the reed vole field vole under the conditions of island isolation, in Teriologicheskie issledovaniya na yuge Dal’nego Vostoka (Theriological Studies at the South of the Far East), Vladivostok: Dal’nevost. Otdel. Akad. Nauk SSSR, 1989, pp. 89—99.

  6. Kostenko, N.V., Gryzuny (Rodentia) Dal’nego Vostoka Rossi (Rodents (Rodentia) of the Russian Far East), Vladivostok: Dal’nauka, 2000.

  7. Alekseeva, E.V. and Golenishchev, F.N., Fossil remains of gray voles of the genus Microtus from the cave Bliznetz (Southern Far East), in Gryzuny i zaitseobraznye pozdnego kainozoya (Late Cenozoic Rodents and Lagomorphs), vol. 156 of Trudy Zoologitcheskogo Instituta (Proceedings of the Zoological Institute), 1986, pp. 134—142.

  8. Panasenko, V.E. and Tiunov, M.P., The population of small mammals (Eulipotyphla, Rodentia, Lagomorpha) in the South Sikhote Alin, Vestn. Dal’nevost. Otd. Ross. Akad. Nauk, 2010, no. 4, pp. 60—67.

  9. Willerslev, E. and Cooper, A., Ancient DNA, Proc. R. Soc. B, 2005, vol. 272, pp. 3—16. https://doi.org/10.1098/rspb.2004.2813

    Article  CAS  PubMed  Google Scholar 

  10. Higuchi, R., Bowman, B., Freiberger, M., et al., DNA sequences from the quagga, an extinct member of the horse family, Nature, 1984, vol. 312, pp. 282—284. https://doi.org/10.1038/312282a0

    Article  CAS  PubMed  Google Scholar 

  11. Pääbo, S., Ancient DNA: extraction, characterization, molecular cloning, and enzymatic amplification, Proc. Natl. Acad. Sci. U.S.A., 1989, vol. 86, pp. 1939—1943. https://doi.org/10.1073/pnas.86.6.1939

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hadly, E.A., van Tuinen, M., Chan, Y., and Heiman, K., Ancient DNA evidence of prolonged population persistence with negligible genetic diversity in an endemic tuco-tuco (Ctenomys sociabilis), J. Mammal., 2003, vol. 84, pp. 403—417. https://doi.org/10.1644/1545-1542(2003)084<0403:ADEOPP>2.0.CO;2

    Article  Google Scholar 

  13. Chan, Y.L., Lacey, E.A., Pearson, O.P., and Hadly, E.A., Ancient DNA reveals Holocene loss of genetic diversity in a South American rodent, Biol. Lett., 2005, vol. 1, pp. 423—426. https://doi.org/10.1098/rsbl.2005.0354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Spaeth, P.A., van Tuinen, M., Chan, Y.L., et al., Phylogeography of Microtus longicaudus in the tectonically and glacially dynamic central Rocky Mountains, J. Mammal., 2009, vol. 90, pp. 571—584. https://doi.org/10.1644/08-MAMM-A-204R2.1

    Article  Google Scholar 

  15. Martínková, N, Barnett, R., Cucchi, T., et al., Divergent evolutionary processes associated with colonization of offshore islands, Mol. Ecol., 2013, vol. 22, pp. 5205—5220. https://doi.org/10.1111/mec.12462

    Article  PubMed  PubMed Central  Google Scholar 

  16. Hagelberg, E., Thomas, M.G., Cook, C.E.J., et al., DNA from ancient mammoth bones, Nature, 1994, vol. 370, pp. 333—334. https://doi.org/10.1038/370333b0

    Article  CAS  PubMed  Google Scholar 

  17. Yang, H., Golenberg, E.M., and Shoshani, J., Phylogenetic resolution within the Elephantidae using fossil DNA sequence from the American mastodon (Mammut americanum) as an outgroup, Proc. Natl. Acad. Sci. U.S.A., 1996, vol. 93, pp. 1190—1194. https://doi.org/10.1073/pnas.93.3.1190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Leonard, J.A., Wayne, R.K., and Cooper, A., Population genetics of Ice Age brown bears, Proc. Natl. Acad. Sci. U.S.A., 2000, vol. 97, pp. 1651—1654. https://doi.org/10.1073/pnas.040453097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Debruyne, R., Barriel, V., and Tassy, P., Mitochondrial cytochrome b of the Lyakhov mammoth (Proboscidea, Mammalia): new data and phylogenetic analyses of Elephantidae, Mol. Phylogenet. Evol., 2003, vol. 26, pp. 421—434. https://doi.org/10.1016/S1055-7903(02)00292-0

    Article  CAS  PubMed  Google Scholar 

  20. Krause, J., Dear, P.H., Pollack, J.L., et al., Multiplex amplification of the mammoth mitochondrial genome and the evolution of Elephantidae, Nature, 2005, vol. 439, pp. 724—727. https://doi.org/10.1038/nature04432

    Article  CAS  PubMed  Google Scholar 

  21. Poinar, H.N., Schwarz, C., Qi, J., et al., Metagenomics to paleogenomics: large-scale sequencing of mammoth DNA, Science, 2006, vol. 311, pp. 392—394. https://doi.org/10.1126/science.1123360

    Article  CAS  PubMed  Google Scholar 

  22. Rogaev, E.I., Moliaka, Y.K., Malyarchuk, B.A., et al., Complete mitochondrial genome and phylogeny of Pleistocene mammoth Mammuthus primigenius, PLoS Biol., 2006, vol. 4, pp. 0403—0410. https://doi.org/10.1371/journal.pbio.0040073

  23. Lan, T., Gill, S., Bellemain, E., et al., Evolutionary history of enigmatic bears in the Tibetan Plateau–Himalaya region and the identity of the yeti, Proc. R. Soc. B, 2017, vol. 284, p. 20171804. https://doi.org/10.1098/rspb.2017.1804

    Article  CAS  PubMed  Google Scholar 

  24. Min-Shan, KoA., Zhang, Y., Yang, M.A., et al., Mitochondrial genome of a 22,000-year-old giant panda from southern China reveals a new panda lineage, Curr. Biol., vol. 28, pp. 679—694. https://doi.org/10.1016/j.cub.2018.05.008

  25. Haring, E., Voyta, L.L., Daübl, B., and Tiunov, M.P., Comparison of genetic and morphological characters in fossil teeth of grey voles from the Russian Far East (Rodentia: Cricetidae: Alexandromys), Mamm. Biol., 2015, vol. 80, pp. 496—504. https://doi.org/10.1016/j.mambio.2015.08.001

    Article  Google Scholar 

  26. Tiunov, M.P., Golenishchev, F.N., and Voyta, L.L., The first finding of Mimomys in the Russian Far East, Acta Palaeontol. Pol., 2016, vol. 61, pp. 205−210. https://doi.org/10.4202/app.00082.2014

    Article  Google Scholar 

  27. Haring, E., Sheremetyeva, I., and Kryukov, A., Phylogeny of Palearctic vole species (genus Microtus, Rodentia) based on mitochondrial sequences, Mamm. Biol., 2011, vol. 76, pp. 258−267. https://doi.org/10.1016/j.mambio.2010.04.006

    Article  Google Scholar 

  28. Gao, J., Yue, L., Jiang, X., et al., Phylogeographic patterns of Microtus fortis (Arvicolinae: Rodentia) in China based on mitochondrial DNA sequences, Pakistan J. Zool., 2017, vol. 49, pp. 1185−1195. https://doi.org/10.17582/journal.pjz/2017.49.4.1185.1195

    Article  CAS  Google Scholar 

  29. Hall, T.A., BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows95/98/NT, Nucleic Acids Symp. Ser., 1999, vol. 41, pp. 95—98. https://doi.org/10.1021/bk-1999-0734.ch008

    Article  CAS  Google Scholar 

  30. Bandelt, H.J., Forster, P., and Röhl, A., Median-joining networks for inferring intraspecific phylogenies, Mol. Biol. Evol., 1999, vol. 16, no. 1, pp. 37—48. https://doi.org/10.1093/oxfordjournals.molbev.a026036

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

I am grateful to the staff of the Far Eastern Marine Reserve for the assistance provided in collecting the material.

Funding

This study was partially supported by the Russian Foundation for Basic Research (project no. 15-04-03871) and the program “Priority Scientific Research for the Complex Development of the Far Eastern Branch of the Russian Academy of Sciences” no. 18-4-031.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. N. Sheremetyeva.

Ethics declarations

Conflict of interest. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheremetyeva, I.N. Comparison of Ancient Haplotypes with Modern Island Reed Vole Populations. Russ J Genet 56, 874–879 (2020). https://doi.org/10.1134/S1022795420070145

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795420070145

Keywords:

Navigation