Skip to main content
Log in

Genetic Diversity Pattern of the MHC-LEI0258 Locus across Asian Populations of Chickens

  • ANIMAL GENETICS
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The major histocompatibility complex (MHC) is surprisingly well associated with epidemiological and pathogenic environments, and the MHC-related microsatellite LEI0258 is a useful biomarker for indicating MHC haplotypes. In the present study, we conducted a comprehensive analysis of LEI0258 diversity in 492 Asian chickens and White Leghorns using multiple strategies to gain insight into the effectiveness of this adaptive locus for assessing the diversity and genetics of populations and the potential forces that affect MHC evolution. Comparisons between five Asian local breeds with wide geographic distributions and one commercial breed (White Leghorn chickens) revealed a total of 82 different alleles. The overall observed heterozygosity was 85.55% in Asian chickens and 30.98% in White Leghorn chickens, indicating higher LEI0258 diversity in Asian chickens than in the commercial breed. In addition, a population structure analysis of nine wild jungle fowl populations and several geographically varied Asian chicken populations revealed consistent clustering. Moreover, the results of AMOVA among jungle fowl populations suggested that most of the diversity was found among individuals within populations and within individuals. High levels of polymorphism and divergence were observed in the MHC region within and among populations, whereas limited polymorphisms and divergence were present among geographic groups. Hence, we concluded that the MHC in chickens has low intraspecific and interbreed variation and cannot be adapted as a tool to estimate diversity and migration based on drift and neutral events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Hillel, J., Groenen, M.A.M., and Tixier-Boichard, M., Biodiversity of 52 chicken populations assessed by microsatellite typing of DNA pools, Genet. Sel. Evol., 2003, vol. 35, pp. 553—557.

    Google Scholar 

  2. Granevitze, Z., Hillel, J., and Chen, G.H., Genetic diversity within chicken populations from different continents and management histories, Anim. Genet., 2007, vol. 38, pp. 576—583.

    CAS  PubMed  Google Scholar 

  3. Cuc, N.T., Simianer, H., Eding, H., et al., Assessing genetic diversity of Vietnamese local chicken breeds using microsatellite, Anim. Genet., 2010, vol. 41, no. 5, pp. 545—547.

    CAS  PubMed  Google Scholar 

  4. Rudresh, B.H., Murthy, H.N., Jayashankar, M.R., et al., Microsatellite based genetic diversity study in indigenous chicken ecotypes of Karnataka, Vet. World, 2015, vol. 8, no. 8, pp. 970—976.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Eltanany, M.A. and Hemeda, S.A., Deeper insight into maternal genetic assessments and demographic history for Egyptian indigenous chicken populations using mtDNA analysis, J. Adv. Res., 2016, vol. 7, no. 5, pp. 615—623. https://doi.org/10.1016/j.jare.2016.06.005

    Article  PubMed  PubMed Central  Google Scholar 

  6. Fathi, M.M., Al-Homidan, I., Motawei, M.I., et al., Evaluation of genetic diversity of Saudi native chicken populations using microsatellite markers, Poult. Sci., 2016, vol. 24. pii: pew357.

    Google Scholar 

  7. Bonneaud, C., Perez-Trise, J., Federici, P., et al., Major histocompatibility alleles associated with local resistance to malaria in a passerine, Evolution, 2006, vol. 60, pp. 383—389.

    CAS  PubMed  Google Scholar 

  8. Eizaguirre, C., Lenz, T.L, Kalbe, M., et al., Rapid and adaptive evolution of MHC genes under parasite selection in experimental vertebrate populations, Nat. Commun., 2012, vol. 3. https://doi.org/10.1038/ncomms1632

  9. Kamath, P.L. and Getz, W.M., Adaptive molecular evolution of the Major Histocompatibility Complex genes, DRA and DQA, in the genus Equus,BMC Evol. Biol., 2011, vol. 11, p. 128.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Kubinak, J.L., Ruff, J.S., Hyzer, C.W., et al., Experimental viral evolution to specific host MHC genotypes reveals fitness and virulence trade-offs in alternative MHC types, Proc. Natl. Acad. Sci. U.S.A., 2012, vol. 109, p. 3422.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Radwan, J., Zagalska-Neubauer, M., Cichoń, M., et al., MHC diversity, malaria and lifetime reproductive success in collared flycatchers, Mol. Ecol., 2012, vol. 21, no. 10, p. 2469.

    PubMed  Google Scholar 

  12. Iwasaki, A. and Medzhitov, R., Regulation of adaptive immunity by the innate immune system, Science, 2010, vol. 327, pp. 291—295.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Fulton, J.E., McCarron, A.M., Lund, A.R., et al., A high-density SNP panel reveals extensive diversity, frequent recombination and multiple recombination hotspots within the chicken major histocompatibility complex B region between BG2 and CD1A1, Genet. Sel. Evol., 2016, vol. 7, no. 48, p. 1.

    Google Scholar 

  14. Chazara, O., Tixier-Boichard, M., Morin, V., et al., Organisation and diversity of the class II DM region of the chicken MHC, Mol. Immunol., 2011, vol. 48, pp. 1263—1271.

    CAS  PubMed  Google Scholar 

  15. Fulton, J.E., Juul-Madsen, H.R., Ashwell, C.M., et al., Molecular genotype identification of the Gallus gallus major histocompatibility complex, Immunogenetics, 2006, vol. 58, pp. 407—421.

    CAS  PubMed  Google Scholar 

  16. Sironi, L., Williams, J.L., Stella, A., et al., Genomic study of the response of chicken to highly pathogenic avian influenza virus, BMC Proc., 2011, vol. 5, suppl. 4, p. S25.

    PubMed  PubMed Central  Google Scholar 

  17. McConnell, S.K., Dawson, D.A., Wardle, A., et al., The isolation and mapping of 19 tetranucleotide microsatellite markers in the chicken, Anim. Genet., 1999, vol. 30, pp. 183—189.

    CAS  PubMed  Google Scholar 

  18. Schou, T.W., Labouriau, R., Permin, A., et al., MHC haplotype and susceptibility to experimental infections (Salmonella enteritidis, Pasteurella multocida or Ascaridia galli) in a commercial and an indigenous chicken breed, Vet. Immunol. Immunopathol., 2010, vol. 15, vol. 135, nos. 1—2, p. 52—63.

  19. Owen, J.P., Delany, M.E., and Mullens, BA., MHC haplotype involvement in avian resistance to an ectoparasite, Immunogenetics, 2008, vol. 60, pp. 621—631.

    CAS  PubMed  Google Scholar 

  20. Petersen, A., Chadfield, M.S., Christensen, J.P., et al., Characterization of small-colony variants of Enterococcus faecalis isolated from chickens with amyloid arthropathy, J. Clin. Microbiol., 2008, vol. 46, pp. 2686—2691.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Worley, K., Collet, J., Spurgin, L.G., et al., MHC heterozygosity and survival in red junglefowl, Mol. Ecol., 2010, vol. 19, pp. 3064—3075.

    PubMed  Google Scholar 

  22. Bader, S.R., Kothlow, S., Trapp, S., et al., Acute paretic syndrome in juvenile White Leghorn chickens resembles late stages of acute inflammatory demyelinating polyneuropathies in humans, J. Neuroinflammation, 2010, vol. 7, article 7.

    PubMed  PubMed Central  Google Scholar 

  23. Chang, C.S., Chen, C.F., Berthouly-Salazar, C., et al., A global analysis of molecular markers and phenotypic traits in local chicken breeds in Taiwan, Anim. Genet., 2012, vol. 43, pp. 172—182.

    CAS  PubMed  Google Scholar 

  24. Suzuki, K., Matsumoto, T., Kobayashi, E., et al., Genotypes of chicken major histocompatibility complex B locus associated with regression of Rous sarcoma virus J-strain tumors, Poult. Sci., 2010, vol. 89, pp. 651—657.

    CAS  PubMed  Google Scholar 

  25. Chazara, O., Chang, C.S., Bruneau, N., et al., Diversity and evolution of the highly polymorphic tandem repeat LEI0258 in the chicken MHC-B region, Immunogenetics, 2013, vol. 65, no. 6, pp. 447—459. https://doi.org/10.1007/s00251-013-0697-6

    Article  CAS  PubMed  Google Scholar 

  26. Nikbakht, G., Esmailnejad, A., and Barjesteh, N., LEI0258 microsatellite variability in Khorasan, Marandi, and Arian chickens, Biochem. Genet., 2013, vol. 51, nos. 5—6, pp. 341—349.

    CAS  PubMed  Google Scholar 

  27. Mwambene, P.L., Kyallo, M., Machuka, E., et al., Genetic diversity of 10 indigenous chicken ecotypes from Southern Highlands of Tanzania based on Major Histocompatibility Complex-linked microsatellite LEI0258 marker typing, Poult. Sci., 2019, vol. 16, p. pez076. https://doi.org/10.3382/ps/pez076

    Article  CAS  Google Scholar 

  28. Lima-Rosa, C.A.d.V., Canal, C.W., Fallavena, P.R.V., et al., LEI0258 microsatellite variability and its relationship to B-F haplotypes in Brazilian (blue-egg Caipira) chickens, Genet. Mol. Biol., 2005, vol. 28, pp. 386—389.

    CAS  Google Scholar 

  29. Han, B., Lian, L., Qu, L.J., et al., Abundant polymorphisms at the microsatellite locus LEI0258 in indigenous chickens, Poult. Sci., 2013, vol. 92, pp. 3113—3119.

    CAS  PubMed  Google Scholar 

  30. Esmailnejad, A., Nikbakht Brujeni, G., and Badavam, M., LEI0258 microsatellite variability and its association with humoral and cell mediated immune responses in broiler chickens, Mol. Immunol., 2017, vol. 90, pp. 22—26.

    CAS  PubMed  Google Scholar 

  31. Nikbakht, G. and Esmailnejad, A., Chicken major histocompatibility complex polymorphism and its association with production traits, Immunogenetics, 2015, vol. 67, no. 4, pp. 247—252.

    CAS  PubMed  Google Scholar 

  32. Izadi, F., Ritland, C., and Cheng, K.M., Genetic diversity of the major histocompatibility complex region in commercial and noncommercial chicken flocks using the LEI0258 microsatellite marker, Poult. Sci., 2011, vol. 90, no. 12, pp. 2711—2717.

    CAS  PubMed  Google Scholar 

  33. Spurgin, L.G. and Richardson, D.S., How pathogens drive genetic diversity: MHC, mechanisms and misunderstandings, Proc. Biol. Sci., 2010, vol. 277, no. 1684, pp. 979—988.

  34. Edwards, S.V. and Hedrick, P.W., Evolution and ecology of MHC molecules: from genomics to sexual selection, Trends Ecol. Evol., 1998, vol. 13, pp. 305—311.

    CAS  PubMed  Google Scholar 

  35. Milinski, M., The major histocompatibility complex, sexual selection, and mate choice, Annu. Rev. Ecol. Evol. Syst., 2006, vol. 37, pp. 159—186.

    Google Scholar 

  36. Sambrook, J. and Russell, D.W., Molecular Cloning: A Laboratory Manual, New York: Cold Spring Harbor Laboratory Press, 2001.

    Google Scholar 

  37. E, G.X., Huang, Y.F., Zhao, Y.J., et al., Genetic variability of ten Chinese indigenous goats using MHC-linked microsatellite markers, Vet. Immunol. Immunopathol., 2015, vol. 167, nos. 3—4, pp. 196—199. https://doi.org/10.1016/j.vetimm.2015.07.013

  38. Park, S.D.E., Trypanotolerance in West African cattle and the population genetic effects of selection, Ph.D. Thesis, University of Dublin, 2001.

  39. Goudet, J., FSTAT, a Statistical Program to Estimate and Test Gene Diversities and Fixation Indices (Verison 2.9.3.3), 2002. http://www2.unil.ch/popgen/softwares/fstat.htm.

  40. Excoffier, L. and Lischer, H.E.L., Arlequin 3.5: a new series of programs to perform population genetics analyses under Linux and Windows, Mol. Ecol. Res., 2010, vol. 10, pp. 564—567.

    Google Scholar 

  41. Pritchard, J.K., Stephens, M., and Donnely, P., Inference of population structure using multilocus genotype data, Genetics, 2000, vol. 155, pp. 945—959.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Earl, D.A., and von Holdt, B.M., STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method, Conserv. Genet. Res., 2012, vol. 4, no. 2, pp. 359—361. https://doi.org/10.1007/s12686-011-9548-7

    Article  Google Scholar 

  43. McClelland, E.E., Granger, D.L., Potts, W.K., Major histocompatibility complex-dependent susceptibility to Cryptococcus neoformans in mice, Infect. Immun., 2003, vol. 71, pp. 4815—4817.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Ilmonen, P., Penn, D.J., Damjanovich, K., et al., Major histocompatibility complex heterozygosity reduces fitness in experimentally infected mice, Genetics, 2007, vol. 176, pp. 2501—2508.

    PubMed  PubMed Central  Google Scholar 

  45. Coppage, M., Iqbal, A., Ahmad, A., et al., Leukemia specific loss of heterozygosity of MHC in a CLL patient: disease state impacts timing of confirmatory typing, Hum. Immunol., 2013, vol. 74, no. 1, pp. 41—44. https://doi.org/10.1016/j.humimm.2012.10.003

    Article  CAS  PubMed  Google Scholar 

  46. Lwelamira, J., Kifaro, G.C., and Gwakisa, P.S., Genetic parameters for body weights, egg traits and antibody response against Newcastle disease virus (NDV) vaccine among two Tanzania chicken ecotypes, Trop. Anim. Health Prod., 2009, vol. 41, pp. 51—59.

    CAS  PubMed  Google Scholar 

  47. Schou, T.W., Permin, A., Juul-Madsen, H.R., et al., Gastrointestinal helminths in indigenous and exotic chickens in Vietnam: association of the intensity of infection with the major histocompatibility complex, Parasitology, 2007, vol. 134, pp. 561—573.

    CAS  PubMed  Google Scholar 

  48. Granevitze, Z., Hillel, J., Feldman, M., et al., Genetic structure of a wide-spectrum chicken gene pool, Anim. Genet., 2009, vol. 40, no. 5, pp. 686—693.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Weigend, S., Groeneveld, L., and Eding, H., Clustering of chicken populations from various continents revealed by molecular markers, Genetics and Biodiversity (Proc. 13th Eur. Poult. Conf.), 2008.

  50. Liu, Y.P., Wu, G.S., Yao, Y.G., et al., Multiple maternal origins of chickens: out of the Asian jungles, Mol. Phylogenet. Evol., 2006, vol. 38, pp. 12—19.

    CAS  PubMed  Google Scholar 

  51. Storey, A.A., Athens, J.S., Bryant, D., et al., Investigating the global dispersal of chickens in prehistory using ancient mitochondrial DNA signatures, PLoS One, 2012, vol. 7, no. 7. e39171.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Ye, X., Avendano, S., and Dekkers, J.C.M., Association of twelve immune-related genes with performance of three broiler lines in two different hygiene environments, Poult. Sci., 2006, vol. 85, pp. 1555—1569.

    CAS  PubMed  Google Scholar 

  53. Bollmer, J.L., Ruder, E.A., Johnson, J.A., et al., Drift and selection influence geographic variation at immune loci of prairie-chickens, Mol. Ecol., 2011, vol. 20, pp. 4695—4706.

    PubMed  Google Scholar 

  54. Fraser, B.A., Ramnarine, I.W., and Neff, B.D., Selection at the MHC class IIB locus across guppy (Poecilia reticulata) populations, Heredity, 2010, vol. 104, pp. 155—167.

    CAS  PubMed  Google Scholar 

  55. Moutou, K.A., Koutsogiannouli, E.A., Stamatis, C., et al., Domestication does not narrow MHC diversity in Sus scrofa,Immunogenetics, 2013, vol. 65, no. 3, pp. 195—209.

    CAS  PubMed  Google Scholar 

  56. Shafer, A.B., Fan, C.W., Côté, S.D., et al., (Lack of) genetic diversity in immune genes predates glacial isolation in the North American mountain goat (Oreamnos americanus), J. Hered., 2012, vol. 103, pp. 371—379.

    CAS  PubMed  Google Scholar 

  57. Penn, D.J., Damjanovich, K., and Potts, W.K., MHC heterozygosity confers a selective advantage against multiple-strain infections, Proc. Natl. Acad. Sci. U.S.A., 2002, vol. 99, pp. 11260—11264.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Lwelamira1, J., Kifaro, G.C., Gwakisa, P.S., et al., Association of LEI0258 microsatellite alleles with antibody response against Newcastle disease virus vaccine and body weight in two Tanzania chicken ecotypes, Afr. J. Biotechnol., 2008, vol. 7, no. 6, pp. 714—720.

Download references

Funding

This work was supported by National Natural Science Foundation of China (31172195), Fundamental Research Funds for the Central Universities (XDJK2018B014), Chongqing Research Program of Basic Research and Frontier Technology (cstc2018jcyjAX0153).

Author information

Authors and Affiliations

Authors

Contributions

Equal contribution author: Guang-Xin E, Xing-Hai Duan, and Bai-Gao Yang.

Corresponding author

Correspondence to G. X. E.

Ethics declarations

Conflict of interest. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

E, G.X., Duan, X.H., Yang, B.G. et al. Genetic Diversity Pattern of the MHC-LEI0258 Locus across Asian Populations of Chickens. Russ J Genet 56, 725–733 (2020). https://doi.org/10.1134/S1022795420060058

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795420060058

Keywords:

Navigation