Skip to main content
Log in

Genome Size Dynamics within Multiple Genera of Diploid Seed Plants

  • PLANT GENETICS
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Genome size in plant species is closely associated with many intracellular and environmental factors, which makes it important for adaptation and evolution. Although research on genome size changes has a long history, the problem continues to be challenging because many factors affecting this evolutionary process are still unknown. Despite substantial effort to investigate genome size changes in major plant lineages, the present-day picture remains rather static because the age of plant species is not always taken into consideration. We attempted to systematically investigate genome size dynamics in multiple genera of diploid seed plants. A remarkably strong intrageneric linear dependence between the genome size and evolutionary age of species was found. This linearity of intrageneric genome size dynamics has persisted over millions of years, suggesting gradual changes in DNA content unrelated to the natural selection process. Our results also reveal that some outlier species did not follow this general trend and could go through drastic changes in genome size over a short period of evolutionary time. We conclude that genome size within the genera of many diploid seed plant species is not stochastic and follows a linear dependence on the evolutionary age of the species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Bennett, M.D. and Leitch, I.J., Plant genome size research: a field in focus, Ann. Bot., 2005, vol. 95, pp. 1—6.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Greilhuber, J., Dolezel, J., Lysák, M.A., and Bennett, M.D., The origin, evolution and proposed stabilization of the terms ‘genome size’ and ‘C-value’ to describe nuclear DNA contents, Ann. Bot., 2005, vol. 95, pp. 255—260.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Petrov, D.A., Mutational equilibrium model of genome size evolution, Theor. Popul. Biol., 2002, vol. 61, pp. 531—544.

    PubMed  Google Scholar 

  4. Muotri, A.R., Marchetto, M.C., Coufal, N.G., and Gage, F.H., The necessary junk: new functions for transposable elements, Hum. Mol. Genet., 2007, vol. 16, no. 2, pp. R159—R167.

    CAS  PubMed  Google Scholar 

  5. Jurka, J., Kapitonov, V.V., Kohany, O., and Jurka, M.V., Repetitive sequences in complex genomes: structure and evolution, Annu. Rev. Genomics Hum. Genet., 2007, vol. 8, pp. 241—259.

    CAS  PubMed  Google Scholar 

  6. Jurka, J., Conserved eukaryotic transposable elements and the evolution of gene regulation, Cell Mol. Life Sci., 2008, vol. 65, no. 2, pp. 201—204.

    CAS  PubMed  Google Scholar 

  7. Palazzo, A.F. and Gregory, T.R., The case for junk DNA, PLoS Genet., 2014, vol. 10. e1004351. https://doi.org/10.1371/journal.pgen.1004351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dodsworth, S., Leitch, A.R., and Leitch, I.J., Genome size diversity in angiosperms and its influence on gene space, Curr. Opin. Genet. Dev., 2015, vol. 35, pp. 73—78. https://doi.org/10.1016/j.gde.2015.10.006

    Article  CAS  PubMed  Google Scholar 

  9. Pellicer, J., Hidalgo, O., Dodsworth, S., and Leitch, I.J., Genome size diversity and its impact on the evolution of land plant, Genes (Basel), 2018, E88. https://doi.org/10.3390/genes9020088

  10. Cavalier-Smith, T., Skeletal DNA and the evolution of genome size, Annu. Rev. Biophys. Bioeng., 1982, vol. 11, pp. 273—302.

    CAS  PubMed  Google Scholar 

  11. Cavalier-Smith, T., Economy, speed and size matter: evolutionary forces driving nuclear genome miniaturization and expansion, Ann. Bot., 2005, vol. 95, pp. 147—175.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Gregory, T.R., Coincidence, coevolution, or causation? DNA content, cell size, and the C-value enigma, Biol. Rev., 2001, vol. 7, pp. 65—101.

    Google Scholar 

  13. Vinogradov, A.E., Genome size and chromatin condensation in vertebrates, Chromosoma, 2005, vol. 113, pp. 362—369.

    PubMed  Google Scholar 

  14. Alonso, C., Pérez, R., Bazaga, P., and Herrera, C.M., Global DNA cytosine methylation as an evolving trait: phylogenetic signal and correlated evolution with genome size in angiosperms, Front. Genet., 2015, vol. 6, no. 4. https://doi.org/10.3389/fgene.2015.00004

  15. Morgan, H.D. and Westoby, M., The relationship between nuclear DNA content and leaf strategy in seed plants, Ann. Bot., 2005, vol. 96, pp. 1321—1330.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Garnatje, T., Vallès, J., Garcia, S., et al., Genome size in Echinops L. and related genera (Asteraceae, Cardueae): karyological, ecological and phylogenetic implications, Biol. Cell, 2004, vol. 96, pp. 117—124.

    CAS  PubMed  Google Scholar 

  17. Gregory, T.R., Genome size and developmental complexity, Genetica, 2002, vol. 115, no. 1, pp. 131—146.

    PubMed  Google Scholar 

  18. Markov, A.V., Anisimov, V.A., and Korotayev, A.V., Relationship between genome size and organismal complexity in the lineage leading from prokaryotes to mammals, Paleontol. J., 2010, vol. 44, no. 5, pp. 363—373. https://doi.org/10.1134/S0031030110040015

    Article  Google Scholar 

  19. Vinogradov, A.E. and Anatskaya, O.V., Genome size and metabolic intensity in tetrapods: a tale of two lines, Proc. Biol. Sci., 2006, vol. 273, pp. 27—32.

    PubMed  Google Scholar 

  20. Chénais, B., Caruso, A., Hiard, S., and Casse, N., The impact of transposable elements on eukaryotic genomes: from genome size increase to genetic adaptation to stressful environments, Gene, 2012, vol. 509, pp. 7—15. https://doi.org/10.1016/j.gene.2012.07.042

    Article  CAS  PubMed  Google Scholar 

  21. Leitch, A.R. and Leitch, I.J., Ecological and genetic factors linked to contrasting genome dynamics in seed plants, New Phytol., 2012, vol. 194, pp. 629—646. https://doi.org/10.1111/j.1469-8137.2012.04105.x

    Article  CAS  PubMed  Google Scholar 

  22. Knight, C.A., Molinari, N.A., and Petrov, D.A., The large genome constraint hypothesis: evolution, ecology and phenotype, Ann. Bot., 2005, vol. 95, pp. 177—190.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Hidalgo, O., Pellicer, J., Christenhusz, M., et al., Is there an upper limit to genome size? Trends Plant Sci., 2017, vol. 22, no. 7, pp. 567—573. https://doi.org/10.1016/j.tplants.2017.04.005

    Article  CAS  PubMed  Google Scholar 

  24. Guignard, M.S., Crawley, M.J., Kovalenko, D., et al., Interactions between plant genome size, nutrients and herbivory by rabbits, molluscs and insects on a temperate grassland, Proc. Biol. Sci., 2019, vol. 286, no. 1899, p. 20182619. https://doi.org/10.1098/rspb.2018.2619

  25. Sheremetiev, S.N., Gamalei, Yu.V., and Slemnev, N.N., Trends of angiosperm genome evolution, Tsitologiya, 2011 vol. 53, no. 4, pp. 295—312.

    Google Scholar 

  26. Vinogradov, A.E., Selfish DNA is maladaptive: evidence from the plant Red list, Trends Genet., 2003, vol. 19, pp. 609—614.

    CAS  PubMed  Google Scholar 

  27. Petrov, D.A., Evolution of genome size: new approaches to an old problem, Trends Genet. 2001, vol. 17, pp. 23—28.

    CAS  PubMed  Google Scholar 

  28. Vitte, C. and Panaud, O., LTR retrotransposons and flowering plant genome size: emergence of the increase/decrease model, Cytogenet. Genome Res., 2005, vol. 110, pp. 91—107.

    CAS  PubMed  Google Scholar 

  29. Ågren, J.A. and Wright, S.I., Co-evolution between transposable elements and their hosts: a major factor in genome size evolution?, Chromosome Res., 2011, vol. 19, pp. 777—786. https://doi.org/10.1007/s10577-011-9229-0

    Article  CAS  PubMed  Google Scholar 

  30. Zhao, M. and Ma, J., Co-evolution of plant LTR-retrotransposons and their host genomes, Protein Cell, 2013, vol. 4, pp. 493—501. https://doi.org/10.1007/s13238-013-3037-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Elliott, T.A. and Gregory, T.R., Do larger genomes contain more diverse transposable elements?, BMC Evol. Biol., 2015, vol. 5, p. 69. https://doi.org/10.1186/s12862-015-0339-8

  32. Devos, K.M., Brown, J.K., and Bennetzen, J.L., Genome size reduction through illegitimate recombination counteracts genome expansion in Arabidopsis,Genome Res., 2002, vol. 12, pp. 1075—1079.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Bennetzen, J.L., Mechanisms and rates of genome expansion and contraction in flowering plants, Genetica, 2002, vol. 115, pp. 29—36.

    CAS  PubMed  Google Scholar 

  34. Orel, N. and Puchta, H., Differences in the processing of DNA ends in Arabidopsis thaliana and tobacco: possible implications for genome evolution, Plant Mol. Biol., 2003, vol. 51, pp. 523—531.

    CAS  PubMed  Google Scholar 

  35. Gregory, T.R., Is small indel bias a determinant of genome size?, Trends Genet., 2003, vol. 19, no. 9, pp. 485—488.

    CAS  PubMed  Google Scholar 

  36. Puchta, H., The repair of double-strand breaks in plants: mechanisms and consequences for genome evolution, J. Exp. Bot., 2005, vol. 56, pp. 1—14.

    CAS  PubMed  Google Scholar 

  37. Leitch, I.J., Chase, M.W., and Bennett, M.D., Phylogenetic analysis of DNA C-values provides evidence for a small ancestral genome size in flowering plants, Ann. Bot., 1998, vol. 82, pp. 85—94.

    CAS  Google Scholar 

  38. Soltis, D.E., Soltis, P.S., Bennett, M.D., and Leitch, I.J., Evolution of genome size in the angiosperms, Am. J. Bot., 2003, vol. 90, pp. 1596—1603.

    PubMed  Google Scholar 

  39. Leitch, I.J., Soltis, D.E., Soltis, P.S., and Bennett, M.D., Evolution of DNA amounts across land plants (Embryophyta), Ann. Bot., 2005, vol. 95, pp. 207—217.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Leitch, I.J., Beaulieu, J.M., Chase, M.W., et al., Genome size dynamics and evolution in monocots, J. Bot., 2010, article ID 862516. https://doi.org/10.1155/2010/862516

  41. Wendel, J.F., Cronn, R.C., Johnston, J.S., and Price, H.J., Feast and famine in plant genomes, Genetica, 2002, vol. 115, pp. 37—47.

    CAS  PubMed  Google Scholar 

  42. Johnston, J.S., Pepper, A.E., Hall, A.E., Chen, Z.J., Hodnett, G., Drabek, J., et al., Evolution of genome size in Brassicaceae, Ann. Bot., 2005, vol. 95, pp. 229—235.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Price, H.J., Dillo, S.L., Hodnett, G., et al., Genome evolution in the genus Sorghum (Poaceae), Ann. Bot., 2005, vol. 95, pp. 219—227.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Leitch, I.J., Beaulieu, J.M., Cheung, K., et al., Punctuated genome size evolution in Liliaceae, J. Evol. Biol., 2007, vol. 20, pp. 2296—2308.

    CAS  PubMed  Google Scholar 

  45. Lysak, M.A., Koch, M.A., Beaulieu, J.M., et al., The dynamic ups and downs of genome size evolution in Brassicaceae, Mol. Biol. Evol., 2009, vol. 26, pp. 85—98. https://doi.org/10.1093/molbev/msn223

    Article  CAS  PubMed  Google Scholar 

  46. Leitch, J., Kahandawala, I., Suda, J., et al., Genome size diversity in orchids: consequences and evolution, Ann. Bot., 2009, vol. 104, pp. 469—481.https://doi.org/10.1093/aob/mcp003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Pellicer, J., Kelly, L.J., Magdalena, C., and Leitch, I.J., Insights into the dynamics of genome size and chromosome evolution in the early diverging angiosperm lineage Nymphaeales (water lilies), Genome, 2013, vol. 56, pp. 437—449. https://doi.org/10.1139/gen-2013-0039

    Article  CAS  PubMed  Google Scholar 

  48. Pellicer, J., Kelly, L.J., Leitch, I.J., et al., A universe of dwarfs and giants: genome size and chromosome evolution in the monocot family Melanthiaceae, New Phytol., 2014, vol. 201, pp. 1484—1497. https://doi.org/10.1111/nph.12617

    Article  CAS  PubMed  Google Scholar 

  49. Garcia, S., Leitch, I.J., Anadon-Rosell, A., et al., Recent updates and developments to plant genome size databases, Nucleic Acids Res., 2014, vol. 42, pp. D1159—D1166. https://doi.org/10.1093/nar/gkt1195

    Article  CAS  PubMed  Google Scholar 

  50. Berry, P.E., Hahn, W.J., Sytsma, K.J., et al., Phylogenetic relationships and biogeography of Fuchsia (Onagraceae) based on noncoding nuclear and chloroplast DNA data, Am. J. Bot., 2004, vol. 91, pp. 601—614.

    CAS  PubMed  Google Scholar 

  51. Lledó, M.D., Molecular phylogenetics of Limonium and related genera (Plumbaginaceae): biogeographical and systematic implications, Am. J. Bot. 2003, vol. 92, pp. 1189—1198.

    Google Scholar 

  52. Good-Avila, S.V., Timing and rate of speciation in Agave (Agavaceae), Proc. Natl. Acad. Sci. U.S.A., 2006, vol. 103, pp. 9124—9129.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Moore, B.R. and Donoghue, M.J., Correlates of diversification in the plant clade Dipsacales: geographic movement and evolutionary innovations, Am. Nat., 2007, vol. 170, suppl. 2, pp. S28—S55. https://doi.org/10.1086/519460

    Article  PubMed  Google Scholar 

  54. Qiao, C.-Y., Ran, J.H., Li, Y., and Wang, X.Q., Phylogeny and biogeography of Cedrus (Pinaceae) inferred from sequences of seven paternal chloroplast and maternal mitochondrial DNA regions, Ann. Bot., 2007, vol. 100, pp. 573—580.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Guzmán, B., Lledó, M.D., and Vargas, P., Adaptive radiation in Mediterranean Cistus (Cistaceae), PLoS One, 2009, vol. 4. e6362. https://doi.org/10.1371/journal.pone.0006362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Blattner, F.R., Pleines, T., and Jakob, S.S., Rapid radiation in the barley genus Hordeum (Poaceae) during the Pleistocene in the Americas, in Evolution in Action, 2010. https://doi.org/10.1007/978-3-642-12425-9_2

  57. Carlsen, M.M., Understanding the origin and rapid diversification of the genus Anthurium Schott (Araceae), integrating molecular phylogenetics, morphology and fossils, PhD Thesis, Graduate School at the University of Missouri, USA. 2011. ISBN: 9781124890043.

  58. Poczai, P., Molecular genetic studies on complex evolutionary processes in Archaesolanum (Solanum, Solanaceae), PhD Thesis,University of Pannonia,Hungary, 2011. http://konyvtar.uni-pannon.hu/doktori/2011/ Poczai_Peter_dissertation.pdf.

    Google Scholar 

  59. Sanz, M., Schneeweiss, G.M., Vilatersana, R., and Vallès, J., Temporal origins and diversification of Artemisia and allies (Anthemideae, Asteraceae), Collect. Bot., 2011, vol. 30, pp. 7—15.

    Google Scholar 

  60. Ikinci, N., Molecular phylogeny and divergence times estimates of Lilium section Liriotypus (Liliaceae) based on plastid and nuclear ribosomal ITS DNA sequence data. Turk. J. Bot., 2011, vol. 35, pp. 319—330. https://doi.org/10.3906/bot-1003-29

    Article  CAS  Google Scholar 

  61. Guo, Y.Y., Luo, Y.B., Liu, Z.J., and Wang, X.Q., Evolution and biogeography of the slipper orchids: Eocene vicariance of the conduplicate genera in the Old and New World tropics, PLoS One, 2012, vol. 7, no. 6. e38788. https://doi.org/10.1371/journal.pone.0038788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lo, E.Y.Y. and Donoghue, M.J., Expanded phylogenetic and dating analyses of the apples and their relatives (Pyreae, Rosaceae), Mol. Phylogenet. Evol., 2012, vol. 63, pp. 230—243. https://doi.org/10.1016/j.ympev.2011.10.005

    Article  PubMed  Google Scholar 

  63. Heibl, C. and Renner, S.S., Distribution models and a dated phylogeny for Chilean Oxalis species reveal occupation of new habitats by different lineages, not rapid adaptive radiation, Syst. Biol., 2012, vol. 61, no. 5, pp. 823—834. https://doi.org/10.1093/sysbio/sys034

    Article  PubMed  Google Scholar 

  64. Bliss, B.J. and Suzuki, J.Y., Genome size in Anthurium evaluated in the context of karyotypes and phenotypes, AoB Plants, 2012, pls006. https://doi.org/10.1093/aobpla/pls006

  65. Díez, C.M., Gaut, B.S., Meca, E., Scheinvar, E., Montes-Hernandez, S., Eguiarte, L.E., et al., Genome size variation in wild and cultivated maize along altitudinal gradients, New Phytol., 2013, vol. 199, pp. 264—276. https://doi.org/10.1111/nph.12247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wan, Y., Schwaninger, H.R., Baldo, A.M., Labate, J.A., Zhong, G.-Y., and Simon, C.J., A phylogenetic analysis of the grape genus (Vitis L.) reveals broad reticulation and concurrent diversification during neogene and quaternary climate change, BMC Evol. Biol., 2013, vol. 13, no. 141. https://doi.org/10.1186/1471-2148-13-141

  67. McLeish, M.J., Miller, J.T., and Mound, L.A., Delayed colonization of Acacia by thrips and the timing of host-conservatism and behavioural specialization, BMC Evol. Biol., 2013, vol. 13, no. 188. https://doi.org/10.1186/1471-2148-13-188

  68. Lockwood, J.D., Aleksić, J.M., Zou, J., Wang, J., Liu, J., and Renner, S.S., A new phylogeny for the genus Picea from plastid, mitochondrial, and nuclear sequences, Mol. Phylogenet. Evol., 2013 vol. 69, pp. 717—727. https://doi.org/10.1016/j.ympev.2013.07.004

    Article  PubMed  Google Scholar 

  69. Wang, B., Hybridization and evolution in the genus Pinus, PhD Thesis, Umeå University, Sweden, 2013. https://www.diva-portal.org/smash/get/diva2:652236/ FULLTEXT01.pdf.

    Google Scholar 

  70. Sherman-Broyles, S., Bombarely, A., Grimwood, J., et al., Complete plastome sequences from Glycine syndetika and Six additional perennial wild relatives of soybean,G3 (Bethesda), 2014, vol. 4, pp. 2023—2233. https://doi.org/10.1534/g3.114.012690

    Article  CAS  PubMed  Google Scholar 

  71. Kranitz, M.L., Biffin, E., Clark, A., et al., Evolutionary diversification of New Caledonian Araucaria,PLoS One, 2014, vol. 29, no. 10. e110308. https://doi.org/10.1371/journal.pone.0110308

    Article  CAS  Google Scholar 

  72. Fougère-Danezan, M., Joly, S., Bruneau, A., et al., Phylogeny and biogeography of wild roses with specific attention to polyploids, Ann. Bot., 2015, vol. 115, pp. 275—291. https://doi.org/10.1093/aob/mcu245

    Article  CAS  PubMed  Google Scholar 

  73. Zonneveld, B.J., Leitch, I.J., and Bennett, M.D., First nuclear DNA amounts in more than 300 angiosperms, Ann. Bot., 2005, vol. 96, no. 2, pp. 229—244.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Bai, C., Alverson, W.S., Follansbee, A., and Waller, D.M., New reports of nuclear DNA content for 407 vascular plant taxa from the United States, Ann Bot., 2002, vol. 110, no. 8, pp. 1623—1629. https://doi.org/10.1093/aob/mcs222

    Article  CAS  Google Scholar 

  75. Graham, M.J., Nickell, C.D., and Rayburn, A.L., Relationship between genome size and maturity group in soybean, Theor. Appl. Genet., 1994, vol. 88, pp. 429—432.

    CAS  PubMed  Google Scholar 

  76. Realini, M.F., Poggio, L., Cámara-Hernández, J., and González, G.E., Intra-specific variation in genome size in maize: cytological and phenotypic correlates, AoB Plants, 2015, vol. 8, plv138. https://doi.org/10.1093/aobpla/plv138

    Article  PubMed  PubMed Central  Google Scholar 

  77. Díez, C.M., Gaut, B.S., Meca, E., et al., Genome size variation in wild and cultivated maize along altitudinal gradients, New Phytol., 2013, vol. 199, no. 1, pp. 264—276. https://doi.org/10.1111/nph.12247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Garcia, S., Garnatje, T., Twibell, J.D., and Vallès, J., Genome size variation in the Artemisia arborescens complex (Asteraceae, Anthemideae) and its cultivars, Genome, 2006, vol. 49, pp. 244—253.

    CAS  PubMed  Google Scholar 

  79. Gunn, B.F., Baudouin, L., Beulé, T., et al., Ploidy and domestication are associated with genome size variation in palms, Am. J. Bot., 2015, vol. 102, pp. 1625—1633. https://doi.org/10.3732/ajb.1500164

    Article  CAS  PubMed  Google Scholar 

  80. Greilhuber, J. and Ebert, I., Genome size variation in Pisum sativum,Genome, 1994, vol. 37, no. 4, pp. 646—655.

    CAS  PubMed  Google Scholar 

  81. Piegu, B., Guyot, R., Picault, N., et al., Doubling genome size without polyploidization: dynamics of retrotransposition-driven genomic expansions in Oryza australiensis, a wild relative of rice, Genome Res., 2006, vol. 16, pp. 1262—1269.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Bennetzen, J.L., Ma, J., and Devos, K.M., Mechanisms of recent genome size variation in flowering plants, Ann Bot., 2005, vol. 95, pp. 127—132.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Vinogradov, A.E., Evolution of genome size: multilevel selection, mutation bias or dynamical chaos?, Curr. Opin. Genet. Dev., 2006, vol. 14, pp. 620—626.

    Google Scholar 

Download references

Funding

This work was supported by funds from United States Department of Agriculture, Agricultural Research Service, Beltsville, Maryland (CRIS project 8042-21000-268-00D).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. M. Boutanaev or L. G. Nemchinov.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boutanaev, A.M., Nemchinov, L.G. Genome Size Dynamics within Multiple Genera of Diploid Seed Plants. Russ J Genet 56, 684–692 (2020). https://doi.org/10.1134/S1022795420060046

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795420060046

Keywords:

Navigation