Skip to main content
Log in

Analysis of Transcriptome of Drosophila melanogaster Strains with Disrupted Control of gypsy Retrotransposon Transposition

  • GENERAL GENETICS
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

To study the causes of impaired control of the activity of mobile genetic elements in the strains with the flamenco phenotype SS (w, flamenco mutant) and MS (w, flamenco mutant, active copy of gypsy), sequencing of these transcriptomes was performed. The D32 strain was used as control (laboratory wild type strain). An algorithm was developed for the search for amino acid substitutions in high-throughput RNA sequencing data using a triplet code for analysis. With the help of this algorithm, seven nonsense mutations were detected. The allele-specific PCR method confirmed the presence of five of the seven nonsense mutations found in silico. However, the detected nonsense mutations are not associated with the flamenco phenotype. A search for mutations in 89 genes of the RNA interference system in the SS and MS strains relative to the reference BDGP6 genome and the wild type D32 strain was carried out. No deletions, insertions, nonsense codons, and other disorders that can unambiguously lead to a change in the function of the gene are detected. To identify genes with specific expression for the strains with the flamenco phenotype, the transcriptomes of the SS and MS strains were compared with the control strains D-32, OregonR, and w1118. A set of 25 genes with differential expression was identified, among which two genes, sosie and CR45822, significantly changed the expression in the SS and MS strains. Both genes, directly or indirectly, are involved in oogenesis. Thus, the expression of the sosie and CR45822 genes can be used as a marker of the flamenco phenotype in the SS and MS strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Arkhipova, I.R., Lyubomirskaya, N.V., and Ilyin, Y.V., Drosophila Retrotransposons, Texas: Landes, 1995.

    Google Scholar 

  2. Green, M.M., Mobile DNA elements and spontaneous gene mutation, Eukaryotic Transposable Elements as Mutagenic Agents, Lambert, M.E., McDonald, J.F., and Weinstein, I.B., Eds., Banbury Report 30, 1988, pp. 41—51.

  3. Fedoroff, N.V., Transposable elements, epigenetics, and genome evolution, Science, 2012, vol. 338, no. 6108, pp. 758—767. https://doi.org/10.1126/science.338.6108.758

    Article  CAS  PubMed  Google Scholar 

  4. Warren, I.A., Naville, M., Chalopin, D., et al., Evolutionary impact of transposable elements on genomic diversity and lineage-specific innovation in vertebrates, Chromosome Res., 2015, vol. 23, no. 3, pp. 505—531. https://doi.org/10.1007/s10577-015-9493-5

    Article  CAS  PubMed  Google Scholar 

  5. Elbarbary, R.A., Lucas, B.A., and Maquat, L.E., Retrotransposons as regulators of gene expression, Science, 2016, vol. 351, no. 6274, p. aac7247. https://doi.org/10.1126/science.aac7247

    Article  PubMed  PubMed Central  Google Scholar 

  6. Buchon, N. and Vaury, C., RNAi: a defensive RNA-silencing against viruses and transposable elements, Heredity, 2006, vol. 96, no. 2, pp. 195—202. https://doi.org/10.1038/sj.hdy.6800789

    Article  CAS  PubMed  Google Scholar 

  7. Lee, Y.S., Nakahara, K., Pham, J.W., et al., Distinct roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA silencing pathways, Cell, 2004, vol. 117, pp. 69—81. https://doi.org/10.1016/S0092-8674(04)00261-2

    Article  CAS  PubMed  Google Scholar 

  8. Brennecke, J., Aravin, A.A., Stark, A., et al., Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila,Cell, 2007, vol. 128, no. 6, pp. 1089—1103. https://doi.org/10.1016/j.cell.2007.01.043

    Article  CAS  PubMed  Google Scholar 

  9. Czech, B., Malone, C.D., Zhou, R., et al., An endogenous small interfering RNA pathway in Drosophila,Nature, 2008, vol. 453, pp. 798—802. https://doi.org/10.1038/nature07007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pelisson, A., Song, S.U., Prud’homme, N., et al., Gypsy transposition correlates with the production of a retroviral envelope-like protein under the tissue-specific control of the Drosophila flamenco gene, EMBO J., 1994, vol. 13, no. 18, pp. 4401—4411.

    Article  CAS  Google Scholar 

  11. Desset, S., Conte, C., Dimitri, P., et al., Mobilization of two retroelements, ZAM and Idefix, in a novel unstable line of Drosophila melanogaster,Mol. Biol. Evol., 1999, vol. 16, no. 1, pp. 54—66.

    Article  CAS  Google Scholar 

  12. Desset, S., Meignin, C., Dastugue, B., and Vaury, C., COM, a heterochromatic locus governing the control of independent endogenous retroviruses from Drosophila melanogaster,Genetics, 2003, vol. 164, no. 2, pp. 501—509.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Mevel-Ninio, M.A., Pélisson, A., J. Kinder, A.R., et al., The flamenco locus controls the gypsy and ZAM retroviruses and is required for Drosophila oogenesis, Genetics, 2007, vol. 175, no. 4, pp. 1615—1624. https://doi.org/10.1534/genetics.106.068106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ghildiyal, M., Seitz, H., Horwich, M.D., et al., Endogenous siRNAs derived from transposons and mRNAs in Drosophila somatic cells, Science, 2008, vol. 320, no. 5879, pp. 1077—1081. https://doi.org/10.1126/science.1157396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Robert, V., Prud’homme, N., Kim, A., et al., Characterization of the flamenco region of the Drosophila melanogaster genome, Genetics, 2001, vol. 158, no. 2, pp. 701—713.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Sarot, E., Payen-Groschêne, G., Bucheton, A., and Pélisson, A., Evidence for a piwi-dependent PHK silencing of the gypsy endogenous retrovirus by the Drosophila melanogaster flamenco gene, Genetics, 2004, vol. 166, no. 3, pp. 1313—1321. https://doi.org/10.1534/genetics.166.3.1313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kalmykova, A.I., Klenov, M.S., and Gvozdev, V.A., Argonaute protein PIWI controls mobilization of retrotransposons in the Drosophila male germline, Nucleic Acids Res., 2005, vol. 33, no. 6, pp. 2052—2059. https://doi.org/10.1093/nar/gki323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lu, J. and Clark, A.G., Population dynamics of PIWI-interacting RNAs (piRNSs) and their targets in Drosophila,Genome Res., 2010, vol. 20, no. 2, pp. 212—227. https://doi.org/10.1101/gr.095406.109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yamanaka, S., Siomi, M.C., and Siomi, H., piRNA clusters and open chromatin structure, Mobile DNA, 2014, vol. 5, no. 1, p. 22. https://doi.org/10.1186/1759-8753-5-22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kim, A.I., Lyubomirskaya, N.V., Belyaeva, E.S., et al., The introduction of a transpositionally active copy of retrotransposon gypsy into the stable strain of Drosophila melanogaster causes genetic instability, Mol. Gen. Genet., 1994, vol. 242, no. 4, pp. 472—477.

    Article  CAS  Google Scholar 

  21. Lavrenov, A.R., Nefedova, L.N., Romanova, N.I., and Kim, A.I., Expression of hp1 family genes and their plausible role in formation of flamenco phenotype in D. melanogaster,Biochemistry (Moscow), 2014, vol. 79, no. 11, pp. 1267—1272. https://doi.org/10.1134/S0006297914110157

    Article  CAS  PubMed  Google Scholar 

  22. Razorenova, O.V., Karpova, N.N., Smirnova, Y.B., et al., The distribution in different strains and characteristic features of two subfamilies of Drosophila melanogaster retrotransposon MDG4 (gypsy), Russ. J. Genet., 2001, vol. 37, no. 2, pp. 123—128. https://doi.org/10.1023/A:1009029619460

    Article  CAS  Google Scholar 

  23. Bender, W., Spierer, P., Hogness, D.S., and Chambon, P., Chromosome walking and jumping to isolate DNA from the Ace and rosy loci and the bithorax complex in Drosophila melanogaster,J. Mol. Biol., 1983, vol. 168, no. 1, pp. 17—33.

    Article  CAS  Google Scholar 

  24. Mardis, E.R., Next-generation sequencing platforms, Annu. Rev. Anal. Chem., 2013, vol. 6, pp. 287—303. https://doi.org/10.1146/annurev-anchem-062012-092628

    Article  CAS  Google Scholar 

  25. Hoskins, R.A., Phan, A.C., Naeemuddin, M., et al., Single nucleotide polymorphism markers for genetic mapping in Drosophila melanogaster,Genome Res., 2001, vol. 11, no. 6, pp. 1100—1113. https://doi.org/10.1101/gr.178001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tóth, K.F., Pezic, D., Stuwe, E., and Webster, A., The piRNA pathway guards the germline genome against transposable elements, in Non-Coding RNA and the Reproductive System, Dordrecht: Springer-Verlag, 2016, pp. 51—77. https://doi.org/10.1007/978-94-017-7417-8_4

    Google Scholar 

  27. Czech, B., Preall, J.B., McGinn, J., and Hannon, G.J., A transcriptome-wide RNAi screen in the Drosophila ovary reveals factors of the germline piRNA pathway, Mol. Cell., 2013, vol. 50, no. 5, pp. 749—761. https://doi.org/10.1016/j.molcel.2013.04.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Urusov, F.A., Nefedova, L.N., Lavrenov, A.R., Romanova, N.I., and Kim, A.I., Analysis of genetic complementation between the flamenco and piwi loci in Drosophila melanogaster, Russ. J. Genet.: Appl. Res., 2014, vol. 17, no. 1, pp. 1—7. https://doi.org/10.1134/S2079059714010110

    Article  Google Scholar 

  29. Brennecke, J., Aravin, A.A., Stark, A., et al., Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila,Cell, 2007, vol. 128, no. 6, pp. 1089—1103. https://doi.org/10.1016/j.cell.2007.01.043

    Article  CAS  PubMed  Google Scholar 

  30. Aravin, A.A., Hannon, G.J., and Brennecke, J., The Piwi-piRNA pathway provides an adaptive defense in the transposon arms race, Science, 2007, vol. 318, no. 5851, pp. 761—764. https://doi.org/10.1126/science.1146484

    Article  CAS  PubMed  Google Scholar 

  31. Ishizu, H., Siomi, H., and Siomi, M.C., Biology of PIWI-interacting RNAs: new insights into biogenesis and function inside and outside of germlines, Genes Dev., 2012, vol. 26, no. 21, pp. 2361—2373. https://doi.org/10.1101/gad.203786.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Siomi, M.C., Sato, K., Pezic, D., and Aravin, A.A., PIWI-interacting small RNAs: the vanguard of genome defense, Nat. Rev. Mol. Cell Biol., 2011, vol. 12, no. 4, p. 246. https://doi.org/10.1038/nrm3089

    Article  CAS  PubMed  Google Scholar 

  33. Urwyler, O., Cortinas-Elizondo, F., and Suter, B., Drosophila sosie functions with β(H)-spectrin and actin organizers in cell migration, epithelial morphogenesis and cortical stability, Biol. Open, 2012, vol. 1, no. 10, pp. 994—1005. https://doi.org/10.1242/bio.20122154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Klattenhoff, C., Xi, H., Li, C., et al., The Drosophila HP1 homolog Rhino is required for transposon silencing and piRNA production by dual-strand clusters, Cell, 2009, vol. 138, no. 6, pp. 1137—1149. https://doi.org/10.1016/j.cell.2009.07.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mohn, F., Sienski, G., Handler, D., and Brennecke, J., The rhino-deadlock-cutoff complex licenses noncanonical transcription of dual-strand piRNA clusters in Drosophila,Cell, 2014, vol. 157, no. 6, pp. 1364—1379. https://doi.org/10.1016/j.cell.2014.04.031

    Article  CAS  PubMed  Google Scholar 

  36. Savitsky, M., Kim, M., Kravchuk, O., and Schwartz, Y.B., Distinct roles of chromatin insulator proteins in control of the Drosophila bithorax complex, Genetics, 2016, vol. 202, no. 2, pp. 601—617. https://doi.org/10.1534/genetics.115.179309

    Article  CAS  PubMed  Google Scholar 

  37. Gdula, D.A., Gerasimova, T.I., and Corces, V.G., Genetic and molecular analysis of the gypsy chromatin insulator of Drosophila,Proc. Natl. Acad. Sci. U.S.A., 1996, vol. 93, no. 18, pp. 9378—9383.

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the Russian Foundation for Basic Research (project no. 17-04-01250).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L. N. Nefedova or A. I. Kim.

Ethics declarations

Conflict of interest. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kukushkina, I.V., Makhnovskii, P.A., Nefedova, L.N. et al. Analysis of Transcriptome of Drosophila melanogaster Strains with Disrupted Control of gypsy Retrotransposon Transposition. Russ J Genet 56, 562–571 (2020). https://doi.org/10.1134/S1022795420050087

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795420050087

Keywords:

Navigation