Skip to main content
Log in

Effect of Changes in Genome Ploidy on the Mosaic Character of nptII Gene Expression in Epialleles of the Transgenic Tobacco Line Nu21

  • PLANT GENETICS
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The influence of changes in the genome ploidy and the gene dose on the mosaic pattern of expression of the nptII gene in epialleles of the Nu21 transgenic tobacco line was evaluated. The general preservation of the expression profile of the marker gene nptII is shown (high in the Nu5 epiallele and low in the Nu6 epiallele) in heteroploid crosses of diploid transgenic plants (2n = 48) with polyploid nontransgenic plants (3n = 72, 4n = 96), as well as in self-pollination of experimentally obtained tetraploid transgenic plants of the Nu21 line (4n = 96) and in their hybrids from crossing with nontransgenic diploid plants. It has been established that the stability of expression of the nptII marker gene is influenced by the initial epigenetic status of epialleles and the direction of crossing in hybridization of tetraploid nontransgenic tobacco plants with diploid transgenic plants of the Nu21 line.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Elgin, S.C. and Reuter, G., Position-effect variegation, heterochromatin formation, and gene silencing in Drosophila,Cold Spring Harbor Perspect. Biol., 2013, vol. 5, no. 8, p. a017780. https://doi.org/10.1101/cshperspect.a017780

    Article  CAS  Google Scholar 

  2. Ehlert, B., Schottler, M.A., Tischendorf, G., et al., The paramutated SULFUREA locus of tomato is involved in auxin biosynthesis, J. Exp. Bot., 2008, vol. 59, no. 13, pp. 3635—3647. https://doi.org/10.1093/jxb/ern213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bollmann, J., Carpenter, R., and Coen, E.S., Allelic interactions at the nivea locus of Antirrhinum,Plant Cell, 1991, vol. 3, pp. 1327—1336.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Robbins, M.L., Wang, P., Sekhon, R.S., and Chopra, S., Gene structure induced epigenetic modifications of pericarp color1 alleles of maize result in tissue specific mosaicism, PLoS One, 2009, vol. 4, no. 12, pp. 1—12. https://doi.org/10.1371/journal.pone.0008231

    Article  CAS  Google Scholar 

  5. Napoli, C., Lemieux, C., and Jorgensen, R., Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans, Plant Cell, 1990, vol. 2, pp. 279—289. https://doi.org/10.1105/tpc.2.4.279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Marenkova, T.V., Deineko, E.V., and Shumnyi, V.K., Mosaic expression pattern of the nptII gene in transgenic tobacco plants Nu21, Russ. J. Genet., 2007, vol. 43, no. 7, pp. 780—790.

    Article  CAS  Google Scholar 

  7. Loginova, D.B., Shumnyi, V.K., and Deineko, E.V., Features of T-DNA insert organization in transgenic tobacco-plants, line Nu21, Inf. Vestn. Vavilovskogo O-va.Genet. Sel., 2010, vol. 14, no. 1, pp. 659—665.

    Google Scholar 

  8. Loginova, D.B., Men’shanov, P.N., and Deineko, E.V., Analysis of mosaic expression of the nptII gene in transgenic tobacco plant lines contrasting in mosaicism, Russ. J. Genet., 2012, vol. 48, no. 11, pp. 1097—1102.

    Article  CAS  Google Scholar 

  9. Marenkova, T.V. and Deineko, E.V., Hybridological analysis of inheritance of mosaic nptII gene expression in transgenic tobacco plants, Russ. J. Genet., 2016, vol. 52, no. 6, pp. 557—564. https://doi.org/10.1134/S1022795416060089

    Article  CAS  Google Scholar 

  10. Meyer, P., Linn, F., Heidmann, I., et al., Endogenous and environmental factors influence 35S promoter methylation of a maize A1 gene construct in transgenic petunia and its colour phenotype, Mol. Gen. Genet., 1992, vol. 231, pp. 345—352.

    Article  CAS  Google Scholar 

  11. Ebbs, M.L., Bartee, L., and Bender, J., H3 lysine 9 methylation is maintained on a transcribed inverted repeat by combined action of SUVH6 and SUVH4 methyltransferases, Mol. Cell Biol., 2005, vol. 25, pp. 10507—10515. https://doi.org/10.1128/MCB.25.23.10507-10515.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ding, M. and Jeffrey Chen, Z.J., Epigenetic perspectives on the evolution and domestication of polyploid plant and crops, Curr. Opin. Plant Biol., 2018, vol. 42, pp. 37—48. https://doi.org/10.1016/j.pbi.2018.02.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mittelsten Scheid, O., Jakovleva, L., Afsar, K., et al., A change of ploidy can modify epigenetic silencing, Proc. Natl. Acad. Sci. U.S.A., 1996, vol. 93, no. 14, pp. 7114—7119.

    Article  CAS  Google Scholar 

  14. Mittelsten Scheid, O., Afsar, K., and Paszkowski, J., Formation of stable epialleles and their paramutation-like interaction in tetraploid Arabidopsis thaliana,Nat. Genet., 2003, vol. 34, no. 4, pp. 450—454. https://doi.org/10.1038/ng1210

    Article  CAS  PubMed  Google Scholar 

  15. Mursalimov, S., Sidorchuk, Y., Demidov, D., Meister, A., and Deineko, E., A rise of ploidy level influences the rate of cytomixis in tobacco male meiosis, Protoplasma, 2016, vol. 253, no. 6, pp. 1583—1588. https://doi.org/10.1007/s00709-015-0907-1

    Article  PubMed  Google Scholar 

  16. Smiley, J.H. and Stokes, G.W., Induction and identification of tetraploidy in Burley tobacco, Tobacco, 1966, vol. 163, no. 22, pp. 30—32.

    Google Scholar 

  17. Rozov, S.M., Deineko, E.V., and Deyneko, I.V., Flower Morphology: fully automatic flower morphometry software, Planta, 2018, vol. 247, no. 5, pp. 1163—1173. https://doi.org/10.1007/s00425-018-2856-3

    Article  CAS  PubMed  Google Scholar 

  18. Kenton, A., Parokonny, A.S., Gleba, Y.Y., and Bennett, M.D., Characterization of the Nicotiana tabacum L. genome by molecular cytogenetics, Mol. Gen. Genet., 1993, vol. 240, pp. 159—169.

    Article  CAS  Google Scholar 

  19. Guo, M., Davis, D., and Birchler, J.A., Dosage effects on gene expression in a maize ploidy series, Genetics, 1996, vol. 142, no. 4, pp. 1349—1355.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Liu, S., Yang, Y., Wei, F., et al., Autopolyploidy leads to rapid genomic changes in Arabidopsis thaliana,Theory Biosci., 2017, vol. 136, nos. 3—4, pp. 199—206. https://doi.org/10.1007/s12064-017-0252-3

    Article  CAS  PubMed  Google Scholar 

  21. Stupar, R.M., Bhaskar, P.B., Yandell, B.S., et al., Phenotypic and transcriptomic changes associated with potato autopolyploidization, Genetics, 2007, vol. 176, no. 4, pp. 2055—2067. https://doi.org/10.1534/genetics.107.074286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Matzke, M.A. and Mosher, R.A., RNA-directed DNA methylation: an epigenetic pathway of increasing complexity, Nat. Rev. Genet., 2014, vol. 15, pp. 394—408. https://doi.org/10.1038/nrg3683

    Article  CAS  PubMed  Google Scholar 

  23. Song, K., Lu, P., Tang, K., and Osborn, T.C., Rapid genome change in synthetic polyploids of Brassica and its implications for polyploid evolution, Proc. Natl. Acad. Sci. U.S.A., 1995, vol. 92, pp. 7719—7723.

    Article  CAS  Google Scholar 

  24. Baubec, T., Dinh, H.Q., Pecinka, A., et al., Cooperation of multiple chromatin modifications can generate unanticipated stability of epigenetic states in Arabidopsis,Plant Cell, 2010, vol. 22, no. 1, pp. 34—47. https://doi.org/10.1105/tpc.109.072819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Luo, C., Durgin, B.G., Watanabe, N., and Lam, E., Defining the functional network of epigenetic regulators in Arabidopsis thaliana,Mol. Plant, 2009, vol. 2, pp. 661—674. https://doi.org/10.1093/mp/ssp017

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

Microscopic analysis was performed at the Center for Collective Use of Microscopic Analysis of Biological Objects, Siberian Branch, Russian Academy of Sciences.

Funding

This work was performed as part of the budget project 0324-2019-0040 “Genetic Principles of Biotechnology and Bioinformatics.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Marenkova.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marenkova, T.V., Sidorchuk, Y.V., Kusnetsov, V.V. et al. Effect of Changes in Genome Ploidy on the Mosaic Character of nptII Gene Expression in Epialleles of the Transgenic Tobacco Line Nu21. Russ J Genet 56, 204–212 (2020). https://doi.org/10.1134/S1022795420020088

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795420020088

Keywords:

Navigation