Skip to main content
Log in

Molecular-Genetic Features of Pancreatic Neuroendocrine Tumors

  • REVIEWS AND THEORETICAL ARTICLES
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Neuroendocrine tumors (NETs) account for less than 3% of primary neoplasias of the pancreas. Despite success of the classification, the discovery of new methods of treatment, and innovations in the field of visualization, non-aeroendocrine neoplasms remain a clinically complex object, which is associated, among other things, with the lack of effective biomarkers for early diagnosis and monitoring of the course of the disease. This review is devoted to the analysis of current data on the molecular genetic features of pancreatic neuroendocrine tumors, taking into account the current WHO classification. The signaling pathways and individual markers that are being developed for the typing of NETs, the prognosis of the course of the disease, and the identification of potential targets for targeted therapy are discussed. The molecular bases of hereditary syndromes, which are associated with the development of NETs, are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Ohmoto, A., Rokutan, H., and Yachida, S., Pancreatic neuroendocrine neoplasms: basic biology, current treatment strategies and prospects for the future, Int. J. Mol. Sci., 2017, vol. 18, no. 1, pp. 1—16. https://doi.org/10.3390/ijms18010143

    Article  CAS  Google Scholar 

  2. Sun, J., Pancreatic neuroendocrine tumors, Intractable Rare Dis. Res., 2017, vol. 6, no. 1, pp. 21—28. https://doi.org/10.5582/irdr.2017.01007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhang, J., Francois, R., Iyer, R., et al., Current understanding of the molecular biology of pancreatic neuroendocrine tumors, J. Natl. Cancer Inst., 2013, vol. 105, no. 14, pp. 1005—1017. https://doi.org/10.1093/jnci/djt135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Falconi, M., Eriksson, B., Kaltsas, G., et al., Consensus guidelines update for the management of functional p-NETs (F-p-NETs) and non-functional p-NETs (NF-p-NETs), Neuroendocrinology, 2016, vol. 103, no. 2, pp. 153—171. https://doi.org/10.1159/000443171

    Article  CAS  PubMed  Google Scholar 

  5. Chai, S.M., Brown, I.S., and Kumarasinghe, M.P., Gastroenteropancreatic neuroendocrine neoplasms: selected pathology review and molecular updates, Histopathology, 2018, vol. 72, no. 1, pp. 153—167. https://doi.org/10.1111/his.13367

    Article  PubMed  Google Scholar 

  6. Klöppel, G., Klimstra, D.S., Hruban, R.H., et al., Pancreatic neuroendocrine tumors: update on the new World Health Organization classification, AJSP:Rev. Rep., 2017, vol. 22, no. 5, pp. 233—239. https://doi.org/10.1097/PCR.0000000000000211

    Article  Google Scholar 

  7. Larghi, A., Capurso, G., Carnuccio, A., et al., Ki-67 grading of nonfunctioning pancreatic neuroendocrine tumors on histologic samples obtained by EUS-guided fine-needle tissue acquisition: a prospective study, Gastrointest. Endosc., 2012, vol. 76, no. 3, pp. 570—577. https://doi.org/10.1016/j.gie.2012.04.477

    Article  PubMed  Google Scholar 

  8. McCall, C.M., Shi, C., Cornish, T.C., et al., Grading of well-differentiated pancreatic neuroendocrine tumors is improved by the inclusion of both Ki67 proliferative index and mitotic rate, Am. J. Surg. Pathol., 2013, vol. 37, pp. 1671—1677. https://doi.org/10.1097/PAS.0000000000000089

    Article  PubMed  PubMed Central  Google Scholar 

  9. Uccella, S., Sessa, F., and La Rosa, S., Diagnostic approach to neuroendocrine neoplasms of the gastrointestinal tract and pancreas, Turk Patoloji Derg., 2015, vol. 31, pp. 113—127. https://doi.org/10.5146/tjpath.2015.01319

    Article  PubMed  Google Scholar 

  10. Amorim, J.P., Santos, G., Vinagre, J., and Soares, P., The role of ATRX in the alternative lengthening of telomeres (ALT) phenotype, Genes (Basel), 2016, vol. 7, no. 9, pp. 1—20. https://doi.org/10.3390/genes7090066

    Article  CAS  Google Scholar 

  11. He, J., Mansouri, A., and Das, S., Alpha thalassemia/mental retardation syndrome X-linked, the alternative lengthening of telomere phenotype, and gliomagenesis: current understandings and future potential, Front. Oncol., 2017, vol. 7, pp. 1—6. https://doi.org/10.3389/fonc.2017.00322

    Article  Google Scholar 

  12. Han, B., Cai, J., Gao, W., et al., Loss of ATRX suppresses ATM dependent DNA damage repair by modulating H3K9me3 to enhance temozolomide sensitivity in glioma, Cancer Lett., 2018, vol. 419, pp. 280—290. https://doi.org/10.1016/j.canlet.2018.01.056

    Article  CAS  PubMed  Google Scholar 

  13. Brazina, J., Svadlenka, J., Macurek, L., et al., DNA damage-induced regulatory interplay between DAXX, p53, ATM kinase and Wip1 phosphatase, Cell Cycle, 2015, vol. 14, no. 3, pp. 375—387. https://doi.org/10.4161/15384101.2014.988019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Udugama, M., Sanij, E., Voon, H.P.J., et al., Ribosomal DNA copy loss and repeat instability in ATRX-mutated cancers, Proc. Natl. Acad. Sci. U.S.A., 2018, vol. 115, no. 18, pp. 4737—4742. https://doi.org/10.1073/pnas.1720391115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Liu, H., Xie, Y., Zhang, Z., et al., Telomeric recombination induced by DNA damage results in telomere extension and length heterogeneity, Neoplasia, 2018, vol. 20, no. 9, pp. 905—916. https://doi.org/10.1016/j.neo.2018.07.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kramara, J., Osia, B., and Malkova, A., Break-induced replication: the where, the why, and the how, Trends Genet., 2018, vol. 34, no. 7, pp. 518—531. https://doi.org/10.1016/j.tig.2018.04.002

    Article  CAS  PubMed  Google Scholar 

  17. Singhi, A.D. and Klimstra, D.S., Well-differentiated pancreatic neuroendocrine tumours (PanNETs) and poorly differentiated pancreatic neuroendocrine carcinomas (PanNECs): concepts, issues and a practical diagnostic approach to high-grade (G3) cases, Histopathology, 2018, vol. 72, no. 1, pp. 168—177. https://doi.org/10.1111/his.13408

    Article  PubMed  Google Scholar 

  18. Kim, J.Y., Brosnan-Cashman, J.A., An, S., et al., Alternative lengthening of telomeres in primary pancreatic neuroendocrine tumors is associated with aggressive clinical behavior and poor survival, Clin. Cancer Res., 2017, vol. 23, no. 6, pp. 1598—1606. https://doi.org/10.1158/1078-0432.CCR-16-1147

    Article  CAS  PubMed  Google Scholar 

  19. Yadav, R., Kakkar, A., Sharma, A., et al., Study of clinicopathological features, hormone immunoexpression, and loss of ATRX and DAXX expression in pancreatic neuroendocrine tumors, Scand. J. Gastroenterol., 2016, vol. 51, no. 8, pp. 994—999. https://doi.org/10.3109/00365521.2016.1170195

    Article  CAS  PubMed  Google Scholar 

  20. Pipinikas, C.P., Dibra, H., Karpathakis, A., et al., Epigenetic dysregulation and poorer prognosis in DAXX-deficient pancreatic neuroendocrine tumours, Endocr. Relat. Cancer, 2015, vol. 22, no. 3, pp. L13—L18. https://doi.org/10.1530/ERC-15-0108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Raj, N., Shah, R., Stadler, Z., et al., Real-time genomic characterization of metastatic pancreatic neuroendocrine tumors has prognostic implications and identifies potential germline action ability, JCO Precis. Oncol., 2018, vol. 2, pp. 1—18. https://doi.org/10.1200/PO.17.00267

    Article  Google Scholar 

  22. Chou, W.-C., Lin, P.-H., Yeh, Y.-C., et al., Genes involved in angiogenesis and mTOR pathways are frequently mutated in Asian patients with pancreatic neuroendocrine tumors, Int. J. Biol. Sci., 2016, vol. 12, no. 12, pp. 1523—1532. https://doi.org/10.7150/ijbs.16233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wong, H.L., Yang, K.C., Shen, Y., et al., Molecular characterization of metastatic pancreatic neuroendocrine tumors (PNETs) using whole-genome and transcriptome sequencing, Cold Spring Harbor Mol. Case Stud., 2018, vol. 4, no. 1, pp. 1—16. https://doi.org/10.7150/ijbs.16233

    Article  CAS  Google Scholar 

  24. Finnerty, B.M., Gray, K.D., Moore, M.D., et al., Epigenetics of gastroenteropancreatic neuroendocrine tumors: a clinicopathologic perspective, World J. Gastrointest. Oncol., 2017, vol. 9, no. 9, pp. 341—353. https://doi.org/10.4251/wjgo.v9.i9.341

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ji, S., Yang, W., Liu, J., et al., High throughput gene sequencing reveals altered landscape in DNA damage responses and chromatin remodeling in sporadic pancreatic neuroendocrine tumors, Pancreatology, 2018, vol. 18, no. 3, pp. 318—327. https://doi.org/10.1016/j.pan.2018.01.006

    Article  CAS  PubMed  Google Scholar 

  26. Scarpa, A., Chang, D.K., Nones, K., et al., Whole-genome landscape of pancreatic neuroendocrine tumours, Nature, 2017, vol. 543, no. 7643, pp. 65—71. https://doi.org/10.1038/nature21063

    Article  CAS  PubMed  Google Scholar 

  27. Cassol, C. and Mete, O., Endocrine manifestations of von Hippel—Lindau disease, Arch. Pathol. Lab. Med., 2015, vol. 139, no. 2, pp. 263—268. https://doi.org/10.5858/arpa.2013-0520-RS

    Article  PubMed  Google Scholar 

  28. Zhang, J. and Zhang, Q., VHL and hypoxia signaling: beyond HIF in cancer, Biomedicines, 2018, vol. 6, no. 1, pp. 1—13. https://doi.org/10.3390/biomedicines6010035

    Article  CAS  Google Scholar 

  29. Quaglia, F., Minervini, G., Tabaro, F., and Tosatto, S.C.E., Insights into the molecular features of the von Hippel—Lindau like protein, BioRxiv, 2018, pp. 1—16. https://doi.org/10.1101/407353

  30. Lawrence, B., Blenkiron, C., Parker, K., et al., Recurrent loss of heterozygosity correlates with clinical outcome in pancreatic neuroendocrine cancer, NPJGenomic Med., 2018, vol. 3, no. 18, pp. 1—12. https://doi.org/10.1038/s41525-018-0058-3

    Article  Google Scholar 

  31. Ganguly, S., Jacob, L.A., Biswas, S. and Lakshmaiah, K.C., Pancreatic neuroendocrine tumor in an individual with von Hippel—Lindau syndrome: a case report and review literature, Int. J. Cancer Theor. Oncol., 2015, vol. 3, no. 4, pp. 1—4. https://doi.org/10.14319/ijcto.34.10

    Article  Google Scholar 

  32. Jochmanová, I., Zelinka, T., Widimský, J., Jr., and Pacak, K., HIF signaling pathway in pheochromocytoma and other neuroendocrine tumors, Physiol. Res., 2014, vol. 63, pp. 251—262.

    Google Scholar 

  33. Razmara, M., Monazzam, A., and Skogseid, B., Reduced menin expression impairs rapamycin effects as evidenced by an increase in mTORC2 signaling and cell migration, Cell Commun. Signal., 2018, vol. 16, no. 1, pp. 1—12. https://doi.org/10.1186/s12964-018-0278-2

    Article  CAS  Google Scholar 

  34. Khatami, F. and Tavangar, S.M., Multiple endocrine neoplasia syndromes from genetic and epigenetic perspectives, Biomark. Insights, 2018, vol. 13, pp. 1—9. https://doi.org/10.1177/1177271918785129

    Article  Google Scholar 

  35. Birla, S., Malik, E., Jyotsna, V.P., and Sharma, A., Novel multiple endocrine neoplasia type 1 variations in patients with sporadic primary hyperparathyroidism, Indian J. Endocrinol. Metab., 2016, vol. 20, no. 4, pp. 432—436. https://doi.org/10.4103/2230-8210.183467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pea, A., Hruban, R.H., and Wood, L.D., Genetics of pancreatic neuroendocrine tumors: implications for the clinic, Expert. Rev. Gastroenterol. Hepatol., 2015, vol. 9, no. 11, pp. 1407—1419. https://doi.org/10.1586/17474124.2015.1092383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Shi, K., Liu, X., Li, H., et al., Menin modulates mammary epithelial cell numbers in bovine mammary glands through cyclin D1, J. Mammary Gland Biol. Neoplasia, 2017, vol. 22, no. 4, pp. 221—233. https://doi.org/10.1007/s10911-017-9385-8

    Article  PubMed  PubMed Central  Google Scholar 

  38. Lin, W., Watanabe, H., Peng, S., et al., Dynamic epigenetic regulation by menin during pancreatic islet tumor formation, Mol. Cancer Res., 2015, vol. 13, no. 4, pp. 689—698. https://doi.org/10.1158/1541-7786.MCR-14-0457

    Article  CAS  PubMed  Google Scholar 

  39. Feng, Z., Ma, J., and Hua, X., Epigenetic regulation by the menin pathway, Endocr. Relat. Cancer, 2017, vol. 24, no. 10, pp. T147—T159. https://doi.org/10.1530/ERC-17-0298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jiang, Z., Shi, D., Tu, Y., et al., Human proislet peptide promotes pancreatic progenitor cells to ameliorate diabetes through FOXO1/menin-mediated epigenetic regulation, Diabetes, 2018, vol. 67, no. 7, pp. 1345—1355. https://doi.org/10.2337/db17-0885

    Article  CAS  PubMed  Google Scholar 

  41. Helm, M. and Joseph, S., The genetics of neuroendocrine tumors: a brief overview, J. Clin. Epigenet., 2017, vol. 3, no. 2, pp. 1—3. https://doi.org/10.21767/2472-1158.100067

    Article  Google Scholar 

  42. Falchetti, A., Genetics of multiple endocrine neoplasia type 1 syndrome: what’s new and what’s old, F1000Research, 2017, vol. 6, pp. 1—10. https://doi.org/10.12688/f1000research.7230.1

    Article  CAS  Google Scholar 

  43. Tevosyan, L.H., Dreval’, A.V., Kryukova, I.V., and Barsukov, I.A., The syndrome of multiple endocrine neoplasia type 1: a clinical case, Russ. Med. Zh., 2017, no. 1, pp. 61—63.

  44. de Oliveira, A.H., da Silva, A.E., de Oliveira, I.M., et al., MutY-glycosylase: an overview on mutagenesis and activities beyond the GO system, Oncotarget, 2016, vol. 7, no. 31, pp. 50719—50734. https://doi.org/10.1016/j.mrfmmm.2014.08.002

    Article  CAS  Google Scholar 

  45. Hamzehloei, T. and Dehsorkhi, M.D., Colorectal carcinomas, a consideration on MUTYH-associated polyposis, Shiraz. E-Med. J., 2014, vol. 15, no. 3, pp. 1—6. https://doi.org/10.17795/semj21868

    Article  Google Scholar 

  46. Aretz, S., Tricarico, R., Papi, L., et al., MUTYH-associated polyposis (MAP): evidence for the origin of the common European mutations p.Tyr179Cys and p.Gly396Asp by founder events, Eur. J. Hum. Genet., 2014, vol. 22, no. 7, pp. 923—929. https://doi.org/10.1038/ejhg.2012.309

    Article  CAS  PubMed  Google Scholar 

  47. Ronco, C., Martin, A.R., Demangeabc, L., and Benhida, R., ATM, ATR, CHK1, CHK2 and WEE1 inhibitors in cancer and cancer stem cells, Med. Chem. Commun., 2016, vol. 8, pp. 295—319. https://doi.org/10.1039/C6MD00439C

    Article  CAS  Google Scholar 

  48. Helena, J.M., Joubert, A.M., Grobbelaar, S., et al., Deoxyribonucleic acid damage and repair: capitalizing on our understanding of the mechanisms of maintaining genomic integrity for therapeutic purposes, Int. J. Mol. Sci., 2018, vol. 19, no. 4, pp. 1—23. https://doi.org/10.3390/ijms19041148

    Article  CAS  Google Scholar 

  49. Shen, T., Zhou, H., Shang, C., et al., Ciclopirox activates ATR-Chk1 signaling pathway leading to Cdc25A protein degradation, Genes Cancer, 2018, vol. 9, nos. 1—2, pp. 39—52. https://doi.org/10.18632/genesandcancer.166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zannini, L., Delia, D., and Buscemi, G., CHK2 kinase in the DNA damage response and beyond, J. Mol. Cell. Biol., 2014, vol. 6, no. 6, pp. 442—457. https://doi.org/10.1093/jmcb/mju045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Coriat, R., Walter, T., Terris, B., et al., Gastroenteropancreatic well-differentiated Grade 3 neuroendocrine tumors: review and position statement, Oncologist, 2016, vol. 21, no. 10, pp. 1191—1199. https://doi.org/10.1634/theoncologist.2015-0476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Conciatori, F., Ciuffreda, L., Bazzichetto, C., et al., mTOR cross-talk in cancer and potential for combination therapy, Cancers (Basel), 2018, vol. 10, no. 1, pp. 1—30. https://doi.org/10.3390/cancers10010023

    Article  CAS  Google Scholar 

  53. Ersahin, T., Tuncbaga, N., and Cetin-Atalay, R., The PI3K/AKT/mTOR interactive pathway, Mol. BioSyst., 2015, vol. 11, pp. 1946—1954. https://doi.org/10.1039/c5mb00101c

    Article  CAS  PubMed  Google Scholar 

  54. Saxton, R.A. and Sabatini, D.M., mTOR signaling in growth, metabolism, and disease, Cell, 2017, vol. 168, no. 6, pp. 960—976. https://doi.org/10.1016/j.cell.2017.02.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lamberti, G., Brighi, N., Maggio, I., et al., The role of mTOR in neuroendocrine tumors: future cornerstone of a winning strategy?, Int. J. Mol. Sci., 2018, vol. 19, no. 3, pp. 1—17. https://doi.org/10.3390/ijms19030747

    Article  CAS  Google Scholar 

  56. Allaway, R.J., Gosline, S.J.C., La Rosa, S., et al., Cutaneous neurofibromas in the genomics era: current understanding and open questions, Br. J. Cancer, 2018, vol. 118, pp. 1539—1548. https://doi.org/10.1038/s41416-018-0073-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Mafficini, A. and Scarpa, A., Genomic landscape of pancreatic neuroendocrine tumours: the International Cancer Genome Consortium, J. Endocrinol., 2018, vol. 236, no. 3, pp. R161—R167. https://doi.org/10.1530/JOE-17-0560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sciarretta, S., Forte, M., Frati, G., and Sadoshima, J., New insights into the role of mTOR signaling in the cardiovascular system, Circ. Res., 2018, vol. 122, no. 3, pp. 489—505. https://doi.org/10.1161/CIRCRESAHA.117.311147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Polchi, A., Magini, A., Meo, D.D., et al., mTOR signaling and neural stem cells: the tuberous sclerosis complex model, Int. J. Mol. Sci., 2018, vol. 19, no. 5, pp. 1—22. https://doi.org/10.3390/ijms19051474

    Article  CAS  Google Scholar 

  60. Larson, A.M., Hedgire, S.S., Deshpande, V., et al., Pancreatic neuroendocrine tumors in patients with tuberous sclerosis complex, Clin. Genet., 2012, vol. 82, no. 6, pp. 558—563. https://doi.org/10.1111/j.1399-0004.2011.01805.x

    Article  CAS  PubMed  Google Scholar 

  61. Asprino, P.F., Linck, R.D.M., Cesar, J., et al., TSC2 rare germline variants in non-tuberous sclerosis patients with neuroendocrine neoplasias, Endocr. Relat. Cancer, 2018, vol. 25, no. 2, pp. L1—L5. https://doi.org/10.1530/ERC-17-0286

    Article  CAS  PubMed  Google Scholar 

  62. Serej, F.A., Pourhassan-Moghaddam, M., Kalan, M.E., et al., Targeting the PI3K/Akt/mTOR signaling pathway: applications of nanotechnology, Crescent J. Med. Biol. Sci., 2018, vol. 5, no. 1, pp. 7—13. https://doi.org/10.1530/ERC-17-0286

    Article  CAS  Google Scholar 

  63. Gammon, A., Jasperson, K., and Champine, M., Genetic basis of Cowden syndrome and its implications for clinical practice and risk management, Appl. Clin. Genet., 2016, vol. 9, pp. 83—92. https://doi.org/10.2147/TACG.S41947

    Article  PubMed  PubMed Central  Google Scholar 

  64. Neychev, V., Sadowski, S.M., Zhu, J., et al., Neuroendocrine tumor of the pancreas as a manifestation of Cowden syndrome: a case report, J. Clin. Endocrinol. Metab., 2016, vol. 101, no. 2, pp. 353—358.https://doi.org/10.1210/jc.2015-3684

    Article  CAS  PubMed  Google Scholar 

  65. Martin, D.R., LaBauve, E., Pomo, J.M., et al., Site-specific genomic alterations in a well-differentiated pancreatic neuroendocrine tumor with high-grade progression, Pancreas, 2018, vol. 47. № 4, pp. 502—510. https://doi.org/10.1097/MPA.0000000000001030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Janku, F., Phosphoinositide 3-kinase (PI3K) pathway inhibitors in solid tumors: from laboratory to patients, Cancer Treat. Rev., 2017, vol. 59, pp. 93—101. https://doi.org/10.1016/j.ctrv.2017.07.005

    Article  CAS  PubMed  Google Scholar 

  67. Yi, K.H. and Lauring, J., Recurrent AKT mutations in human cancers: functional consequences and effects on drug sensitivity, Oncotarget, 2016, vol. 7, no. 4, pp. 4241—4251. https://doi.org/10.18632/oncotarget.6648

    Article  PubMed  Google Scholar 

  68. Li, J., Duns, G., Westers, H., et al., SETD2: an epigenetic modifier with tumor suppressor functionality, Oncotarget, 2016, vol. 7, no. 31, pp. 50719—50734. https://doi.org/10.18632/oncotarget.9368

    Article  PubMed  PubMed Central  Google Scholar 

  69. Wei, S., Li, C., Yin, Z., et al., Histone methylation in DNA repair and clinical practice: new findings during the past 5-years, J. Cancer, 2018, vol. 9, no. 12, pp. 2072—2081. https://doi.org/10.7150/jca.23427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Fahey, C.C. and Davis, I.J., SETting the stage for cancer development: SETD2 and the consequences of lost methylation, Cold Spring Harbor Perspect. Med., 2017, vol. 7, no. 5, pp. 1—15. https://doi.org/10.1101/cshperspect.a026468

    Article  CAS  Google Scholar 

  71. Nasir, A. and Coppola, D., Neuroendocrine Tumors: Review of Pathology, Molecular and Therapeutic Advances, New York: Springer-Verlag, 2016. https://doi.org/10.1007/978-1-4939-3426-3

    Book  Google Scholar 

  72. Shirole, N.H., Pal, D., Kastenhuber, E.R., et al., TP53 exon-6 truncating mutations produce separation of function isoforms with pro-tumorigenic functions, eLife, 2016, vol. 5, pp. 1—25. https://doi.org/10.7554/eLife.17929

    Article  CAS  Google Scholar 

  73. Vieler, M. and Sanyal, S., p53 isoforms and their implications in cancer, Cancers (Basel), 2018, vol. 10, no. 9, pp. 1—19. https://doi.org/10.3390/cancers10090288

    Article  CAS  Google Scholar 

  74. Liu, Y., Chen, C., Xu, Z., Scuoppo, C., et al., Deletions linked to TP53 loss drive cancer through p53-independent mechanisms, Nature, 2016, vol. 531, no. 7595, pp. 471—475. https://doi.org/10.1038/nature17157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kastenhuber, E.R. and Lowe, S.W., Putting p53 in context, Cell, 2017, vol. 170, no. 6, pp. 1062—1078. https://doi.org/10.1016/j.cell.2017.08.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Levine, A.J., Ting, D.T., and Greenbaum, B.D., P53 and the defenses against genome instability caused by transposons and repetitive elements, BioEssays, 2016, vol. 38, no. 6, pp. 508—513. https://doi.org/10.1002/bies.201600031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Henssen, A.G. and Kentsis, A., Emerging functions of DNA transposases and oncogenic mutators in childhood cancer development, JCI Insight, 2018, vol. 3, no. 20, pp. 1—9. https://doi.org/10.1172/jci.insight.123172

    Article  Google Scholar 

  78. Kımıloğlu Şahan, E., Erdoğan, N., Ulusoy, İ., et al., P53, KI-67, CD117 expression in gastrointestinal and pancreatic neuroendocrine tumours and evaluation of their correlation with clinicopathological and prognostic parameters, Turk. J. Gastroenterol., 2015, vol. 26, no. 2, pp. 104—111. https://doi.org/10.5152/tjg.2015.1965

    Article  PubMed  Google Scholar 

  79. Hackeng, W.M., Hruban, R.H., Offerhaus, G.J., and Brosens, L.A., Surgical and molecular pathology of pancreatic neoplasms, Diagn. Pathol., 2016, vol. 11, no. 1, pp. 1—17. https://doi.org/10.1186/s13000-016-0497-z

    Article  CAS  Google Scholar 

  80. Tang, L.H., Untch, B.R., Reidy, D.L., et al., Well-differentiated neuroendocrine tumors with a morphologically apparent high-grade component: a pathway distinct from poorly differentiated neuroendocrine carcinomas, Clin. Cancer Res., 2016, vol. 22, no. 4, pp. 1011—1017. https://doi.org/10.1158/1078-0432.CCR-15-0548

    Article  CAS  PubMed  Google Scholar 

  81. Konukiewitz, B., Schlitter, A.M., Jesinghaus, M., et al., Somatostatin receptor expression related to TP53 and RB1 alterations in pancreatic and extrapancreatic neuroendocrine neoplasms with a Ki67-index above 20, Mod. Pathol., 2017, vol. 30, no. 4, pp. 587—598. https://doi.org/10.1038/modpathol.2016.217

    Article  CAS  PubMed  Google Scholar 

  82. Vélez-Cruz, R. and Johnson, D.G., The retinoblastoma (RB) tumor suppressor: pushing back against genome instability on multiple fronts, Int. J. Mol. Sci., 2017, vol. 18, no. 8, pp. 1—16. https://doi.org/10.3390/ijms18081776

    Article  CAS  Google Scholar 

  83. Worrall, J.T., Tamura, N., Mazzagatti, A., et al., Non-random mis-segregation of human chromosomes, Cell Rep., 2018, vol. 23, no. 11, pp. 3366—3380. https://doi.org/10.1016/j.celrep.2018.05.047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Levine, M.S. and Holland, A.J., The impact of mitotic errors on cell proliferation and tumorigenesis, Genes Dev., 2018, vol. 32, nos. 9—10, pp. 620—638. https://doi.org/10.1101/gad.314351.118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Barra,V. and Fachinetti, D., The dark side of centromeres: types, causes and consequences of structural abnormalities implicating centromeric DNA, Nat. Commun., 2018, vol. 9, no. 1, pp. 1—17. https://doi.org/10.1038/s41467-018-06545-y

    Article  CAS  Google Scholar 

  86. Manning, A.L., Benes, C., and Dyson, N.J., Whole chromosome instability resulting from the synergistic effects of pRB and p53 inactivation, Oncogene, 2014, vol. 33, no. 19, pp. 2487—2494. https://doi.org/10.1038/onc.2013.201

    Article  CAS  PubMed  Google Scholar 

  87. Gonzalez-Vasconcellos, I., Schneider, R., Anastasov, N., et al., The Rb1 tumour suppressor gene modifies telomeric chromatin architecture by regulating TERRA expression, Sci. Rep., 2017, vol. 7, pp. 1—9. https://doi.org/10.1038/srep42056

    Article  CAS  Google Scholar 

  88. Lang, P.F. and Fröhlich, K.-U., The influence of physical exercise and sports on telomere length, Peer J. Prepr., vol. 4, pp. 1—34. https://doi.org/10.7287/peerj.preprints.1965v1

  89. Bernal, A. and Tusell, L., Telomeres: implications for cancer development, Int. J. Mol. Sci., 2018, vol. 19, no. 1, pp. 1—21. https://doi.org/10.3390/ijms19010294

    Article  CAS  Google Scholar 

  90. Uchida, C., Roles of pRB in the regulation of nucleosome and chromatin structures, BioMed Res. Int., 2016, vol. 2016, pp. 1—11. https://doi.org/10.1155/2016/5959721

    Article  CAS  Google Scholar 

  91. Perren, A., Couvelard, A., Scoazec, J.Y., et al., ENETS consensus guidelines for the standards of care in neuroendocrine tumors: pathology: diagnosis and prognostic stratification, Neuroendocrinology, 2017, vol. 105, no. 3, pp. 196—200. https://doi.org/10.1159/000457956

    Article  CAS  PubMed  Google Scholar 

  92. Kaltsas, G., Caplin, M., Davies, P., et al., ENETS consensus guidelines for the standards of care in neuroendocrine tumors: pre- and perioperative therapy in patients with neuroendocrine tumors, Neuroendocrinology, 2017, vol. 105, no. 3, pp. 245—254. https://doi.org/10.1159/000461583

    Article  CAS  PubMed  Google Scholar 

  93. Pavel, M., Valle, J.W., Eriksson, B., et al., ENETS consensus guidelines for the standards of care in neuroendocrine neoplasms: systemic therapy—biotherapy and novel targeted agents, Neuroendocrinology, 2017, vol. 105, no. 3, pp. 266—280. https://doi.org/10.1159/000471880

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

No financial support was provided for the preparation of the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Yu. Gvaldin.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kit, O.I., Gvaldin, D.Y., Trifanov, V.S. et al. Molecular-Genetic Features of Pancreatic Neuroendocrine Tumors. Russ J Genet 56, 142–158 (2020). https://doi.org/10.1134/S1022795420020064

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795420020064

Keywords:

Navigation