Skip to main content
Log in

Using DNA Barcoding to Study Hedgehog Community in Egypt

  • ANIMAL GENETICS
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

This is the first study of analyzing and identifying the hedgehog community in Egypt using a molecular marker especially it includes the Four-toed Hedgehog which is found in Gebel Elba but has never been signalized in Egypt. Thirty-two specimens are representing seven species and subspecies of hedgehogs were sampled. Five external measurements and eight cranial measurements were used. DNA was extracted and cytochrome b gene sequences data were analyzed. Maximum Likelihood tree based on Cyt b sequences reveals that there are two separate genetic clusters, one cluster for genus Atelerix and the other includes Hemiechinus and Paraechinus members. Genetic relationship between three subspecies of genus Paraechinus was detected, the morphological relationship was studied but there is a difficult to distinguish between them. These results strongly suggest that cytochrome b gene has been confirmed as an effective tool among mitochondrial genes, with high power of differentiation for species identification and characterization in both taxonomy and forensic science.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Bannikova, A.A., Dolgov, V.A., Fedorova, L.V., et al., The relationships of the hedgehogs of the subfamily Erinaceinae (Mammalia, Insectivora) as inferred from the restriction analysis of the total DNA, Zool. Zh., 1995, vol. 74, pp. 95—107.

    Google Scholar 

  2. Santucci, F., Emerson, B.C., and Hewitt, G.M., Mitochondrial DNA phylogeography of European hedgehogs, Mol. Ecol., 1998, vol. 7, no. 9, pp. 1163—1172.

    Article  CAS  Google Scholar 

  3. Bannikova, A.A., Matveev, V.A., and Kramerov, D.A., Using inter-SINE-PCR to study mammalian phylogeny, Russ. J. Genet., 2002, vol. 38, no. 6, pp. 714—724.

    Article  CAS  Google Scholar 

  4. Bannikova, A.A., Kramerov, D.A., Vasilenko, V.N., et al., DNA polymorphism of Erinaceus hedgehogs and E. concolor taxon (Insectivora, Erinaceidae), Zool. Zh., 2003, vol. 82, pp. 70—80.

    Google Scholar 

  5. He, K., Chen, J.H., Gould, G.C., et al., An estimation of Erinaceidae phylogeny: a combined analysis approach. PLoS One, 2012, vol. 7, no. 6. e39304.

    Article  CAS  Google Scholar 

  6. Krettek, A., Gullberg, A., and Arnason, U., Sequence analysis of the complete mitochondrial DNA molecule of the hedgehog, Erinaceus europaeus, and the phylogenetic position of the Lipotyphla, J. Mol. Evol., 1995, vol. 41, no. 6, pp. 952—957.

    Article  CAS  Google Scholar 

  7. Mouchaty, S.K., Gullberg, A., Janke, A., et al., The phylogenetic position of the Talpidae within Euteria based on analysis of complete mitochondrial sequences, Mol. Biol. Evol., 2000, vol. 17, no. 1, pp. 60—67.

    Article  CAS  Google Scholar 

  8. Arnason, U., Adegoke, J.A., Bodin, K., et al., Mammalian mitogenomic relationships and the root of the eutherian tree, Proc. Natl. Acad. Sci. U.S.A., 2002, vol. 99, no. 12, pp. 8151—8156.

    Article  CAS  Google Scholar 

  9. Gould, G.C., The phylogenetic resolving power of discrete dental morphology among extant hedgehogs and the implications for their fossil record, Am. Mus. Novit., 2001, vol. 3340, pp. 1—52.

    Article  Google Scholar 

  10. Butler, P.M., On the evolution of the skull and teeth in the Erinaceidae with special reference to fossil material in the British museum, J. Zool., 1948, vol. 118, no. 2, pp. 446—500.

    Google Scholar 

  11. Corbet, G.B., and Hill, J.E., A World List of Mammalian Species, London: British Museum of Natural History, 1980.

    Google Scholar 

  12. Rich, T.H.V., Origin and history of the Erinaceidae and Brachyericinae (Mammalia, Insectivora) in North America, Bull. Am. Mus. Nat. Hist., 1981, vol. 171, pp. 1—116.

    Google Scholar 

  13. Novacek, M.J., Thomas, M.B., and Schankler, D., On the classification of the Early Tertiary Erinaceomorpha (Insectivora, Mammalia), Am. Mus. Novit., 1985, vol. 2813, pp. 1—22.

    Google Scholar 

  14. Corbet, G.B., The family Erinaceidae; a synthesis of its taxonomy, phylogeny, ecology and zoogeography, Mamm. Rev., 1988, vol. 18, no. 3, pp. 117—172.

    Article  Google Scholar 

  15. Frost, D.R., Wozencraft, W.C., and Hoffmann, R.S., Phylogenetic relationships of hedgehogs and gymnures (Mammalia: Insectivora; Erinaceidae), Smithson. Contrib. Zool., 1991, vol. 518, pp. 1—69.

    Article  Google Scholar 

  16. Gould, G.C., Hedgehog phylogeny (Mammalia, Erinaceidae): the reciprocal illumination of the quick and the dead, Am. Mus. Novit., 1995, vol. 3131, pp. 1—45.

    Google Scholar 

  17. Robbins, C.B., and Setzer, H.W., Morphometrics and distinctness of the hedgehog genera (Insectivora: Erinaceidae), Proc. Biol. Soc. Wash., 1985, vol. 98, no. 1, pp. 112—120.

    Google Scholar 

  18. Hutterer, R., Order Erinaceomorpha, Mammal Species of the World: a Taxonomic and Geographic Reference, Wilson, D.E. and Reeder, D.M., Eds., Baltimore: Johns Hopkins University Press, 2005, 3rd ed., pp. 212—219.

    Google Scholar 

  19. Saleh, M.A., and Basuony, M.I., New mammalian records from Egypt, Egypt.J. Zool., 2014, vol. 62, no. 2, pp. 111—130.

    Google Scholar 

  20. Deef, L.E.M., First record of Atelerix albiventris (Family: Erinaceidae) from southeastern of Egypt Confirmed by molecular analysis, Pak. J. Zool., 2018, vol. 51, no. 1, pp. 9—14.

    Article  Google Scholar 

  21. Rohlf, F.J., NTSYSpc: Numerical Taxonomy and Multivariate Analysis System version 2.02e, Setauket: Exeter Software, 1997.

    Google Scholar 

  22. Tamura, K., Stecher, G., Peterson, D., et al., MEGA6: Molecular Evolutionary Genetics Analysis version 6.0, Mol. Biol. Evol., 2013, vol. 30, no. 12, pp. 2725—2729.

    Article  CAS  Google Scholar 

  23. Pereira, F., Carneiro, J., and Amorim, A., Identification of species with DNA-based technology: current progress and challenges, Recent Pat. DNA Gene Seq., 2008, vol. 2, no. 3, pp. 187—199.

    Article  CAS  Google Scholar 

  24. Rokas, A., Ladoukakis, E., and Zouros, E., Animal mitochondrial DNA recombination revisited, Trends Ecol. Evol., 2003, vol. 18, no. 8, pp. 411—417.

    Article  Google Scholar 

  25. Kuwayama, R., and Ozawa, T., Phylogenetic relationships among European red deer, wapiti, and sika deer inferred from mitochondrial DNA sequences, Mol. Phylogenet. Evol., 2000, vol. 15, no. 1, pp. 115—123.

    Article  CAS  Google Scholar 

  26. Saif, R., Babar, M.E., Awan, A.R., et al., DNA fingerprinting of Pakistani buffalo breeds (Nili-Ravi, Kundi) using microsatellite and cytochrome b gene markers, Mol. Biol. Rep., 2012, vol. 39, no. 2, pp. 851—856.

    Article  CAS  Google Scholar 

  27. Prusak, B., Grzybowski, G., and Ziẻba, G., Taxonomic position of Bison bison (Linnaeus, 1758) and Bison bonasus (Linnaeus, 1758) based on analysis of Cyt b gene sequence, Anim. Sci. Pap. Rep., 2004, vol. 22, no. 1, pp. 27—35.

    Google Scholar 

  28. Parson, W., Pegoraro, K., Niederstatter, H., et al., Species identification by means of the cytochrome b gene, Int. J. Legal Med., 2000, vol. 114, nos. 1—2, pp. 23—28.

    Article  CAS  Google Scholar 

  29. Grenyer, R., and Purvis, A., A composite species-level phylogeny of the ‘Insectivora’ (Mammalia: Order Lipotyphla Haeckel, 1866), J. Zool., 2003, vol. 260, no. 3, pp. 245—257.

    Article  Google Scholar 

  30. Derouiche, L., Vercammen, P., Bouhadad, R., et al., Genetic evidence supporting the taxonomic separation of the Arabian and Northwest African subspecies of the desert hedgehog (Paraechinus aethiopicus), Gene, 2017, vol. 620, pp. 54—65.

    Article  CAS  Google Scholar 

  31. Kuo, C.H., and Avise, J.C., Phylogeographic breaks in low-dispersal species: the emergence of concordance across gene trees, Genetica, 2005, vol. 124, nos. 2—3, pp. 179—186.

    Article  Google Scholar 

  32. Papadopoulou, A., Monaghan, M.T., Barraclough, T.G., et al., Sampling error does not invalidate the Yule-Coalescent model for species delimitation: a response to Lohse (2009), Syst. Biol., 2009, vol. 58, no. 4, pp. 442—444.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. E. M. Deef.

Ethics declarations

Conflict of interest. The author declares no conflict of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deef, L.E. Using DNA Barcoding to Study Hedgehog Community in Egypt. Russ J Genet 56, 226–233 (2020). https://doi.org/10.1134/S1022795420020052

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795420020052

Keywords:

Navigation