Skip to main content
Log in

Targeted Sequencing for Studying Economically Useful Traits and Phylogenetic Diversity of Ancient Sheep

  • ANIMAL GENETICS
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Sheep were one of the first animals to be domesticated. The history of sheep domestication and their widespread distribution dates to about ten thousand years ago, during which sheep exhibit both physical changes and modifications at the genetic level. The authors developed a system of 49 oligonucleotide primers for targeted Next Generation Sequencing (NGS) of genetic loci for phylogenetic analysis and identifying economically useful traits. Altogether, NGS libraries were prepared and sequenced on an Illumina MiSeq platform(Illumina) for 48 samples, for 40 of which it was possible to determine phylogenetic lineages: 28 belonged to haplogroup B, 10 to haplogroup A, and one sample each to haplogroups C and D. Study of the genes associated with economically useful traits revealed the samples with nucleotide substitutions in the MC1R gene leading to black coat color: two samples with c.218T>A, one with c.361G>A, and two with both substitutions simultaneously, as well as one sample with the substitution in the GDF8 gene associated with muscle hypertrophy and one with the substitution in the TYRP1 gene associated with brown coat color. The data obtained confirm a high genetic diversity of sheep from ancient southwestern Siberia and the utility of targeted sequencing for the study of ancient DNA samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Vigne, J.D., The origins of animal domestication and husbandry: a major change in the history of humanity and the biosphere, C. R. Biol., 2011, vol. 334, no. 3, pp. 171—181. https://doi.org/10.1016/j.crvi.2010.12.009

    Article  PubMed  Google Scholar 

  2. Zeder, M.A., Domestication and early agriculture in the Mediterranean Basin: origins, diffusion, and impact, Proc. Natl. Acad. Sci. U.S.A., 2008, vol. 105, no. 33, pp. 11597—11604. https://doi.org/10.1073/pnas.0801317105

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ryder, M., Sheep and Man, Duckworth, 1983.

    Google Scholar 

  4. Meadows, J.R.S., Hiendleder, S., and Kijas, J.W., Haplogroup relationships between domestic and wild sheep resolved using a mitogenome panel, Heredity (Edinburgh), 2011, vol. 106, no. 4, pp. 700—706. https://doi.org/10.1038/hdy.2010.122

    Article  CAS  PubMed  Google Scholar 

  5. Ermolenko, N.A., Boyarskikh, U.A., Kechin, A.A., et al., Massive parallel sequencing for diagnostic genetic testing of BRCA genes—a single center experience, Asian Pac. J. Cancer Prev., 2015, vol. 16, no. 17, pp. 7935—7941. https://doi.org/10.7314/apjcp.2015.16.17.7935

    Article  PubMed  Google Scholar 

  6. Pääbo, S., Gifford, J.A., and Wilson, A.C., Mitochondrial DNA sequences from a 7000-year old brain, Nucleic Acids Res., 1988, vol. 16, no. 20, p. 9775. https://doi.org/10.1093/nar/16.20.9775

    Article  PubMed  PubMed Central  Google Scholar 

  7. Nguyen-Dumont, T., Pope, B.J., Hammet, F., et al., A high-plex PCR approach for massively parallel sequencing, Biotechniques, 2013, vol. 55, no. 2, pp. 69—74. https://doi.org/10.2144/000114052

    Article  CAS  PubMed  Google Scholar 

  8. Bolger, A.M., Lohse, M., and Usadel, B., Trimmomatic: a flexible trimmer for Illumina sequence data, Bioinformatics, 2014, vol. 30, no. 15, pp. 2114—2120. https://doi.org/10.1093/bioinformatics/btu170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Li, H. and Durbin, R., Fast and accurate short read alignment with Burrows—Wheeler transform, Bioinformatics, 2009, vol. 25, no. 14, pp. 1754—1760. https://doi.org/10.1093/bioinformatics/btp324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kechin, A., Boyarskikh, U., Kel, A., and Filipenko, M., cutPrimers: a new tool for accurate cutting of primers from reads of targeted next generation sequencing, J. Comput. Biol., 2017, vol. 24, no. 11, pp. 1138—1143. https://doi.org/10.1089/cmb.2017.0096

    Article  CAS  PubMed  Google Scholar 

  11. Dymova, M.A., Zadorozhny, A.V., Mishukova, O.V., et al., Mitochondrial DNA analysis of ancient sheep from Altai, Anim. Genet., 2017, vol. 48, no. 5, pp. 615—618. https://doi.org/10.1111/age.12569

    Article  CAS  PubMed  Google Scholar 

  12. Tamura, K., Stecher, G., Peterson, D., et al., MEGA6: molecular evolutionary genetics analysis version 6.0, Mol. Biol. Evol., 2013, vol. 30, no. 12, pp. 2725—2729. https://doi.org/10.1093/molbev/mst197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Clop, A., Marcq, F., Takeda, H., et al., A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep, Nat. Genet., 2006, vol. 38, no. 7, pp. 813—818. https://doi.org/10.1038/ng1810

    Article  CAS  PubMed  Google Scholar 

  14. Hinten, G.N., Hale, M.C., Gratten, J., et al., SNP-SCALE: SNP scoring by colour and length exclusion, Mol. Ecol. Notes, 2007, vol. 7, no. 3, pp. 377—388. https://doi.org/10.1111/j.1471-8286.2006.01648.x

    Article  CAS  Google Scholar 

  15. Stiller, M., Knapp, M., Stenzel, U., et al., Direct multiplex sequencing (DMPS)—a novel method for targeted high-throughput sequencing of ancient and highly degraded DNA, Genome Res., 2009, vol. 19, no. 10, pp. 1843—1848. https://doi.org/10.1101/gr.095760.109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kechin, A., Khrapov, E., Boyarskikh, U., et al., BRCA-analyzer: automatic workflow for processing NGS reads of BRCA1 and BRCA2 genes, Comput. Biol. Chem., 2018, vol. 77, pp. 297—306. https://doi.org/10.1016/j.compbiolchem.2018.10.012

    Article  CAS  PubMed  Google Scholar 

  17. Tapio, M., Marzanov, N., Ozerov, M., et al., Sheep mitochondrial DNA variation in European, Caucasian, and Central Asian areas, Mol. Biol. Evol., 2006, vol. 23, no. 9, pp. 1776—1783. https://doi.org/10.1093/molbev/msl043

    Article  PubMed  Google Scholar 

  18. Lv, F.-H., Peng, W.-F., Yang, J., et al., Mitogenomic meta-analysis identifies two phases of migration in the history of eastern Eurasian sheep, Mol. Biol. Evol., 2015, vol. 32, no. 10, pp. 2515—2533. https://doi.org/10.1093/molbev/msv139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to D.V. Panin and Ya.V. Frolov for the samples from archaeological sites Rublevo-VI and Firsovo-XIV provided for the comparative analysis and to the native English speaker T.R. Hermes for thorough text revision.

Funding

This work was supported by the Russian Science Foundation (project no. 16-18-10033 “Formation and Evolution of Life Support Systems in Nomadic Societies of Altai and Adjacent Territories in the Late Antiquity and Middle Ages: Complex Reconstruction”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Kechin.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by A. Barkhash

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kechin, A.A., Dymova, M.A., Tishkin, A.A. et al. Targeted Sequencing for Studying Economically Useful Traits and Phylogenetic Diversity of Ancient Sheep. Russ J Genet 55, 1499–1505 (2019). https://doi.org/10.1134/S102279541912007X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102279541912007X

Keywords:

Navigation