Skip to main content
Log in

Culturing Caenorhabditis elegans on Escherichia coli Strains Lacking the Synthesis of bo' and bd-I Terminal Oxidases Extends the Nematode Lifespan

  • SHORT COMMUNICATIONS
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The effect of E. colicyoA and cydA mutations that diminish the activity of bo' and bd-I terminal oxidases, respectively, on the lifespan of C. elegans nematodes was examined. It was demonstrated that the mean lifespan of the nematodes feeding on the cyoA and cydA mutants increased by 15.5 and 12.8%, respectively. It is known that cyoA and cydA mutants are characterized by the increased level of reactive oxygen species production. It is suggested that the lifespan extension in C. elegans is determined by moderate oxidative stress that occurs in the nematode organism upon culturing on these mutant bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Clark, L.C. and Hodgkin, J., Commensals in the C. elegans model, Cell. Microbiol., 2014, vol. 16, pp. 27—38. https://doi.org/10.1111/cmi.12234

    Article  CAS  PubMed  Google Scholar 

  2. Zhang, J., Holdorf, A.D., and Walhout, A.J.M.C., C. elegans and its bacterial diet as a model for systems-level understanding of host—microbiota interactions, Curr. Opin. Biotechnol., 2017, vol. 46, pp. 74—80. https://doi.org/10.1016/j.copbio.2017.01.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Saiki, R., Lunceford, A.L., Bixler, T., et al., Altered bacterial metabolism, not coenzyme Q content, is responsible for the lifespan extension in Caenorhabditis elegans fed an Escherichia coli diet lacking coenzyme Q, Aging Cell, 2008, vol. 7, pp. 291—304. https://doi.org/10.1111/j.1474-9726.2008.00378.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Virk, B., Correia, G., Dixon, D.P., et al., Excessive folate synthesis limits lifespan in the C. elegans E. coli aging model, BMC Biol., 2012, vol. 10: 67. https://doi.org/10.1186/1741-7007-10-67

    Article  CAS  Google Scholar 

  5. Cabreiro, F., Au, C., Leung, K.-Y., et al., Metformin retards aging in C. elegans by altering microbial folate and methionine metabolism, Cell, 2013, vol. 153, pp. 228—239. https://doi.org/10.1016/j.cell.2013.02.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gusarov, I., Gautier, L., Smolentseva, O., et al., Bacterial nitric oxide extends the lifespan of C. elegans,Cell, 2013, vol. 152, pp. 818—830. https://doi.org/10.1016/j.cell.2012.12.043

    Article  CAS  PubMed  Google Scholar 

  7. Han, B., Sivaramakrishnan, P., Lin, C.J., et al., Microbial genetic composition tunes host longevity, Cell, 2018, vol. 173, p. 1058. https://doi.org/10.1016/j.cell.2018.04.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hoang, K.L., Gerardo, N.M., and Morran, L.T., The effects of Bacillus subtilis on Caenorhabditis elegans fitness after heat stress, Ecol. Evol., 2019, vol. 9, pp. 3491—3499. https://doi.org/10.1002/ece3.4983

    Article  PubMed  PubMed Central  Google Scholar 

  9. Artal-Sanz, M. and Tavernarakis, N., Mechanisms of aging and energy metabolism in Caenorhabditis elegans,IUBMB Life, 2008, vol. 60, pp. 315—322. https://doi.org/10.1002/iub.66

    Article  CAS  PubMed  Google Scholar 

  10. Back, P., Braeckman, B.P., and Matthijssens, F., ROS in aging Caenorhabditis elegans: damage or signaling?, Oxid. Med. Cell Longev., 2012, p. 608478. https://doi.org/10.1155/2012/608478

    Article  Google Scholar 

  11. Scudellari, M., The science myths that will not die, Nature, 2015, vol. 528, pp. 322—325. https://doi.org/10.1038/528322a

    Article  CAS  PubMed  Google Scholar 

  12. Shore, D.E. and Ruvkun, G., A cytoprotective perspective on longevity regulation, Trends Cell Biol., 2013, vol. 23, pp. 409—420. https://doi.org/10.1016/j.tcb.2013.04.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ristow, M. and Zarse, K., How increased oxidative stress promotes longevity and metabolic health: the concept of mitochondrial hormesis (mitohormesis), Exp. Gerontol., 2010, vol. 45, pp. 410—418. https://doi.org/10.1016/j.exger.2010.03.014

    Article  CAS  Google Scholar 

  14. Lee, S.J., Hwang, A.B., and Kenyon, C., Inhibition of respiration extends C. elegans life span via reactive oxygen species that increase HIF-1 activity, Curr. Biol., 2010, vol. 20, pp. 2131—2136. https://doi.org/10.1016/j.cub.2010.10.057

    Article  CAS  Google Scholar 

  15. Schmeisser, S., Schmeisser, K., Weimer, S., et al., Mitochondrial hormesis links low-dose arsenite exposure to lifespan extension, Aging Cell, 2013, vol. 12, pp. 508—517. https://doi.org/10.1111/acel.12076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Van Raamsdonk, J.M. and Hekimi, S., Superoxide dismutase is dispensable for normal animal lifespan, Proc. Natl. Acad. Sci. U.S.A., 2012, vol. 109, pp. 5785—5790. https://doi.org/10.1073/pnas.1116158109

    Article  PubMed  PubMed Central  Google Scholar 

  17. Yang, W. and Hekimi, S., A mitochondrial superoxide signal triggers increased longevity in Caenorhabditis elegans,PLoS Biol., 2010, vol. 8. e1000556. https://doi.org/10.1371/journal.pbio.1000556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bjelakovic, G., Nikolova, D., Gluudet, L.L., et al., Mortality in randomized trials of antioxidant supplements for primary and secondary prevention: systematic review and meta-analysis, JAMA, 2007, vol. 297, pp. 842—857. https://doi.org/10.1001/jama.297.8.842

    Article  CAS  PubMed  Google Scholar 

  19. García-Horsman, J.A., Barquera, B., Rumbley, J., et al., The superfamily of heme—copper respiratory oxidases, J. Bacteriol., 1994, vol. 176, pp. 5587—5600. https://doi.org/10.1128/jb.176.18.5587-5600.1994

    Article  PubMed  PubMed Central  Google Scholar 

  20. Cotter, P.A., Chepuri, V., Gennis, R.B., and Gunsalus, R.P., Cytochromeo (cyoABCDE) and (cydAB) oxidase gene expression in Escherichia coli is regulated by oxygen, pH, and the fnr gene product, J. Bacteriol., 1990, vol. 172, pp. 6333—6338. https://doi.org/10.1128/jb.172.11.6333-6338.1990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lindqvist, A., Membrillo-Hernandez, J., Poole, R.K., and Cook, G.M., Roles of respiratory oxidases in protecting Escherichia coli K12 from oxidative stress, Antonie van Leeuwenhoek, 2000, vol. 78, pp. 23—31. https://doi.org/10.1023/A:1002779201379

    Article  CAS  PubMed  Google Scholar 

  22. Brynildsen, M.P., Winkler, J.A., Spina, C.S., et al., Potentiating antibacterial activity by predictably enhancing endogenous microbial ROS production, Nat. Biotechnol., 2013, vol. 31, pp. 160—165. https://doi.org/10.1038/nbt.2458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Baba, T., Ara, T., Hasegawa, M., et al., Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection, Mol. Syst. Biol., 2006, vol. 2, pp. 2006—2008. https://doi.org/10.1038/msb4100050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Miller, J.H., Experiments in Molecular Genetics, Cold Spring Harbor: Cold Spring Harbor Lab., 1972.

    Google Scholar 

  25. Stiernagle, T., Maintenance of C. elegans, Worm Book: the Online Review of C. elegans Biology, 2006. Accessed February 11, 2006.https://doi.org/10.1895/wormbook.1.101.1

  26. Govindan, J.A., Jayamani, E., Zhang, X., et al., Dialogue between E. coli free radical pathways and the mitochondria of C. elegans,Proc. Natl. Acad. Sci. U.S.A., 2015, vol. 112, pp. 12456—12461. https://doi.org/10.1073/pnas.1517448112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tapia, P.C., Sublethal mitochondrial stress with an attendant stoichiometric augmentation of reactive oxygen species may precipitate many of the beneficial alterations in cellular physiology produced by caloric restriction, intermittent fasting, exercise and dietary phytonutrients: “mitohormesis” for health and vitality, Med. Hypotheses, 2006, vol. 66, pp. 832—843. https://doi.org/10.1016/j.mehy.2005.09.009

    Article  CAS  PubMed  Google Scholar 

  28. Schulz, T.J., Zarse, K., Voigt, A., et al., Glucose restriction extends Caenorhabditis elegans life span by inducing mitochondrial respiration and increasing oxidative stress, Cell Metab., 2007, vol. 6, pp. 280—293. https://doi.org/10.1016/j.cmet.2007.08.011

    Article  CAS  PubMed  Google Scholar 

  29. Ristow, M. and Schmeisser, K., Mitohormesis: promotimg health and lifespan by increased level of reactive gene species (ROS), Dose—Response, 2014, vol. 12, pp. 288—341. https://doi.org/10.2203/dose-response.13-035.Ristow

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation (grant no. 17-74-30030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Mironov.

Ethics declarations

Conflicts of interest. The authors declare that they have no conflicts of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Translated by N. Maleeva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Katkova-Zhukotskaya, O.A., Eremina, S.Y., Shakulov, R.S. et al. Culturing Caenorhabditis elegans on Escherichia coli Strains Lacking the Synthesis of bo' and bd-I Terminal Oxidases Extends the Nematode Lifespan. Russ J Genet 55, 1573–1576 (2019). https://doi.org/10.1134/S1022795419120068

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795419120068

Keywords:

Navigation